期刊文献+

具有时滞的混合阶多智能体系统的组一致性 被引量:4

Group Consensus of Mixed-Order Multi-Agent Systems with Time Delays
下载PDF
导出
摘要 针对由离散时间一阶和二阶智能体组成的混合阶多智能体系统,研究其在固定和切换拓扑结构下受通信时滞影响时的组一致性问题。分别为两类智能体提出组一致性协议,引入模型变换,将闭环系统转化为等价系统。在一定假设条件下,以代数图论、矩阵理论为主要研究工具,分别在固定和切换拓扑结构下给出了混合阶多智能体系统实现渐近组一致性的条件。采用数值仿真对所得结果的有效性进行了验证。 In this paper, the group consensus problem for mixed-order multi-agent systems is studied, where the multiagent system is composed of discrete-time first-and second-order agents under fixed and switching topologies with communication delays. Firstly, group consensus protocols are proposed for two kinds of agents. Then model transformation is introduced to transform the closed-loop system into an equivalent system. Under certain assumptions, algebraic graph theory and matrix theory are utilized to derive conditions under which multi-agent systems with fixed and switching topologies will reach group consensus asymptotically, respectively. Finally, the effectiveness of the results obtained in the paper is validated by numerical simulations.
作者 冯元珍 刘敏 FENG Yuanzhen;LIU Min(School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第12期67-71,201,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61503198) 江苏省自然科学基金(No.BK20150827) 江苏省研究生科研与实践创新计划项目(No.KYCX18_0839)
关键词 离散时间混合阶多智能体系统 通信时滞 组一致性 discrete-time mixed-order multi-agent system communication delay group consensus
  • 相关文献

参考文献1

二级参考文献17

  • 1Tian Y P, Liu C L. Consensus of multi-agent systems with diverse input and communication delays. IEEE Trans Aurora Control, 2008, 53(9) : 2122.
  • 2Lin P, Jia M. Consensus of second-order discrete-time multi-a- gent systems with nonuniform time-delays and dynamically chan- ging topologies. Automatica, 2009, 45(9): 2154.
  • 3Liu C L, Liu F. Dynamical consensus seeking of second-order multl-agent systems based on delayed state compensation. Syst Control Lett, 2012, 61(12) : 1235.
  • 4Zhou W M, Xiao J W. Dynamic average consensus and consensus- ability of general linear multiagent systems with random packet dropout. Abstr Appl Anal, 2013, 2013 : 1.
  • 5Ding L, Han Q L, Guo G. Network-based leader-following con- sensus for distributed multi-agent systems. Automatica, 2013, 49 (7) : 2281.
  • 6Zhou B, Lin Z L. Consensus of high-order multi-agent systems with large input and communication delays. Automatica, 2014, 50(2) : 452.
  • 7Liu B, Wang L, Sun D H, et al. Consensus of multiagent systems with directed topology and communication time delay bases on the Laplace transform. Math Probl Eng, 2014, 2014 : 1.
  • 8Djaidja S, Wu Q H, Fang H. Leader-following consensus of doub- le-integrator multi-agent systems with noisy measurements, lnt J ControlAutom Syst, 2015, 13(1) : 17.
  • 9Yin X X, Yue D, Hu S L. Consensus of fractional-order heteroge- neous multi-agent systems. IET Control Theory Appl, 2013, 7 (2) : 314.
  • 10Zheng Y S, Zhu Y, Wang L. Consensus of heterogeneous multi- agent systems, lET Control Theory Appl, 2011, 5 ( 16 ) : 1881.

共引文献6

同被引文献15

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部