期刊文献+

基于H.265编码复杂度的优化模型算法 被引量:1

Optimization Model Algorithm Based on H.265 Encoding Complexity
下载PDF
导出
摘要 提出了一种结合深度学习方法的GRU神经网络模型;通过采用CNN和GRU神经网络结构,将连续若干帧的CTU图像信息依次通过CNN和GRU结构中,训练学习视频空间和时间内容相关性,预测每一帧的编码单元分割结果;通过对基本视频测试序列压缩的实验验证和对比表明,提出的方法大多能有效降低编解码复杂率。 A GRU(Gated Recurrent Unit)neural network model combined with deep learning method was proposed.By adopting the CNN and GRU neural network structure,the CTU image information of several consecutive frames was sequentially passed through the CNN and GRU structures,and the learning video space and temporal content correlation were trained to predict the coding unit segmentation result of each frame.The experimental verification and comparison of the basic video test sequence compression show that the proposed method can effectively reduce the complexity rate in most cases.
作者 任学超 薛红平 武彦君 王学才 平建创 REN Xuechao;XUE Hongping;WU Yanjun;WANG Xuecai;PING Jianchuang(Northern Institute of Automatic Control Technology,Taiyuan 030006,China)
出处 《兵器装备工程学报》 CAS 北大核心 2019年第5期142-145,共4页 Journal of Ordnance Equipment Engineering
关键词 H.265 深度学习 CNN GRU 帧间预测 H.265 deep learning CNN GRU inter-frame prediction
  • 相关文献

参考文献6

二级参考文献43

  • 1I Hadzic,V Kecman.Support vector machines trained by linear programming:theory and application in image compression and date classification[C]// 5th Seminar on Neural Network Applications in Electrical Engineering.Sep.2000:18-23.
  • 2J Robinson,V Kecman.Combining support vector machine learning with the discrete cosine transform in image compression[J].IEEE Transactions on Neural Networks (S1045-9227),2003,14(4):950-958.
  • 3A Said,W A Pearlman.A new,fast,and efficient image codec based on set partitioning in hierarchical trees[J].IEEE Trans.Circ.Syst.Video Tech (S1051-8215),1996,6(3):243-250.
  • 4V N Vapnik.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 5K I Kim,K Jung,J H Kim.Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm[J].IEEE Trans pattern analysis and machine intellgence (S0018-9340),2003,25(12):1631-1639.
  • 6V N Vapnik,S Golowich,A Smola.Support vector Method for Function Approximation,Regression Estimation and Signal Processing[C]//Advances in Neural Information Processing Systems,Cambridge,MA:MIT Press,1997,9,281-287.
  • 7W Sweldens.The lifting scheme:A custom-design construction of biorthogonal wavelets[J].Appl.Comput.Harmon Anal (S 1063-5203),1996,3(2):186-200.
  • 8S Mallat.A theory for multiresolution signal decomposition:The wavelet representation[J].IEEE Trans.Pattern Anal.Machine Intell (S0018-9340),1989,11(7):674-693.
  • 9JPEG 2000.[Online] Available:http://www.jpeg.Org/JPEG2000.htm.
  • 10Cands E, Romberg J, Tao T. Robust uncertainty princi- ples:exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Information Theory ,2006,52(2) :489 - 509.

共引文献49

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部