期刊文献+

基于信息熵的改进海豚群算法及其桁架优化 被引量:4

Improved dolphin swarm algorithm based on information entropy and its truss optimization
原文传递
导出
摘要 针对基本海豚群算法易陷入局部最优的缺陷,提出了基于信息熵的改进海豚群算法,引入信息熵来度量海豚群搜索阶段的不确定性,控制搜索阶段的选择概率,降低盲目搜索,克服了基本海豚群算法搜索阶段易陷入局部最优和早熟收敛的缺陷。将改进后的算法应用到桁架结构的优化中,并与其他算法优化结果进行了比较,证明了改进的算法在收敛速度和寻优精度方面有更好的表现,将其应用到桁架结构优化设计中,为结构优化设计提供了一种有效的方法。 Aiming at the disadvantage that basic dolphin swarm algorithm is easy to fall into local optimum,an improved dolphin swarm algorithm based on information entropy is proposed.The algorithm measures the uncertainty of dolphin swarm search phase by information entropy,controls the selection probability of search phase,reduces blind search,and overcomes the shortcomings of local optimum and premature convergence in the search phase of basic dolphin swarm algorithm.The improved algorithm is applied to the optimization of truss structure and compared with other algorithms.It is proved that the improved algorithm has better performance in convergence speed and optimization accuracy.It is applied to optimum design of truss structure,and provides an effective method for optimum design of structure.
作者 李彦苍 王旭 LI Yancang;WANG Xu(Hebei University of Engineering and Water Resources and Hydropower,Hebei University of Engineering and Hydropower,056038;School of Civil Engineering,Hebei University of Engineering,Handan,Hebei 056038)
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第5期76-85,共10页 Journal of Chongqing University
基金 河北省自然科学基金资助项目(E2012402030) 河北省高校百名优秀创新人才支持计划项目(BR2-206)~~
关键词 海豚群算法 改进 信息熵 收敛 自适应 组合优化 dolphin swarm algorithm improvement information entropy convergence self-adaption combinatorial optimization
  • 相关文献

参考文献5

二级参考文献44

  • 1Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University, 2005.
  • 2Horng M H. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J]. Expert Systems with Application. 2011, 38(11): 13785- 13791.
  • 3Banhanisakun A, Achalakul T, Sirinaovakul B. The best-so far selection in artificial bee colony algorithm[J]. Applied Soft Computing, 2011, 11(9): 2888-2901.
  • 4Ozttirk C, Karabea D, Grkemli B. Artificial bee colony algorithm for dynamic deployment of wireless sensor networks[J]. Turkish J of Electrical Engineering and Computer Sciences, 2012, 20(2): 1-8.
  • 5Bitam S, Batouche M, Talbi E. A survey on bee colony algorithms[C]. IEEE Int Symposium on Parallel & Distributed Processing, Workshops and PhdForum. Atlanta, 2010: 1-8.
  • 6Alam M S, Kabir M W, Islam M M. Self-adaptation of mutation step size in artificial bee colony algorithm for continuous function optimization[C]. The 13th Int Conf on Computer and Information Technology. Dhaka, 2010: 69- 74.
  • 7Guo P, Cheng W M, Liang J. Global artificial bee colony search algorithm for numerical function optimization[C]. The 7th Int Conf on Natural Computation. Shanghai: IEEE, 2011: 128041283.
  • 8Bolaji A L, Khader A T, Al-betar M A. An improved artificial bee colony for course timetabling[C]. The 6th Int Conf on Bio-inspired Computing: Theories Applications. Penang: IEEE Press, 2011: 9-14.
  • 9E1-Abd M. A hybrid ABC-SPSO algorithm for cintinuous function optimization[C]. IEEE Symposium on Swarm Intelligence. Pads: 2011: 1-6.
  • 10Rajasekhar A, Abraham A, Pant M. Levy mutated artificial bee colony algorithm for globaoptimization[C]. IEEE Int Conf on Systems, Man and Cybernettics. Anchorage: IEEE, 2011: 655-662.

共引文献70

同被引文献32

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部