期刊文献+

基于几何不变性和局部相似特征的异源遥感图像配准算法 被引量:19

Registration Algorithm for Heterogeneous Remote Sensing Images Based on Geometric Invariance and Local Similarity Features
下载PDF
导出
摘要 针对异源遥感图像在图像配准中的几何形变问题,本文提出了一种基于几何不变性局部相似特征的异源遥感图像配准算法。GISS算法利用加速鲁棒特征算子先对存在几何差异的异源遥感图像进行预匹配,然后根据特征点的方向特征对图像进行旋转仿射校正,最后引用局部相似性描述符并集成相似性度量来考察预匹配点对的相关性,选取其中相似相关性最优的点对实行图像配准。实验结果表明,对于存在几何形变的异源遥感图像,具有较好的配准实现效果,可以有效的解决异源遥感图像之间的几何形变差异问题,具有较好的鲁棒性和配准精度。 This paper proposes a registration algorithm based on geometric invariance and local similarity features (also known as GISS (geometric invariant self-similarities)), to address the problem of geometric deformation of remote sensing images during image registration. The GISS algorithm first uses the SURF operator and the Euclidean distance to pre-match the heterogeneous remote sensing images with their geometric differences, thereafter rotates the images according to the directional characteristics of the feature points, and finally uses the local self-similarity descriptors and integrates similarity measures to examine the phase of the pre-matched point pairs. The experimental results show that, for remote sensing images with geometric deformations, it has a superior effect on registration, can effectively resolve the problem of geometric deformation between the images, and therefore, ensures better robustness and registration accuracy.
作者 周微硕 安博文 赵明 潘胜达 ZHOU Weishuo;AN Bowen;ZHAO Min;PAN Shengda(College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China)
出处 《红外技术》 CSCD 北大核心 2019年第6期561-571,共11页 Infrared Technology
基金 国家自然科学基金(61302132,41701523,61504078) 上海市教育发展基金会“晨光计划”(13CG51) 广西省教育厅基金(YB2014207)资助
关键词 几何不变 异源遥感图像 仿射校正 局部自相似性描述符 相似性度量 geometric invariant heterogeneous remote sensing images affine correction local self-similarity descriptors similarity measure
  • 相关文献

参考文献2

二级参考文献33

  • 1Kenneth R. Castleman. Digital Image Processing. Prentice Hall, a Simon & Schuster Company,1996
  • 2Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693
  • 3Jo Y T, Shen L X, Seng L L, et al. A general approach for analysis and application of discrete multi-wavelet transform.IEEE Transactions on Signal Processing, 2000,48(2):457-464
  • 4FONSECA L M G,COSTA M H M.Automatic registration of satellite images [A].IEEE Brazilian Symposium on Computer Graphics and Image Processing[C].Campos do Jordo,BRAZIL:IEEE,1997.219-226.
  • 5HSIEH J W,LIAO H Y M,FAN K C,et al.Image registration using a new edge-based approach [J].Computer Vision and Image Understanding,1997,67(2):112-130.
  • 6Il-Kyun Jung,Lacroix S.A robust interest points matching algorithm [A].Proceedings of Eighth IEEE International Conference on Computer Vision[C].Vancouver,BC,Canada: IEEE,2001,2.538 -543.
  • 7HUI Li,MANJUNATH B S.A contour-based approach to multisensor image registration [J].IEEE Transactions on Image Processing,1995,4(3):320-334.
  • 8TON J,JAIN A K.Registering Landsat images by point matching [J].IEEE Transactions on Geoscience and Remote Sensing,1989,27(5):642-651.
  • 9COX G S,JAGER G De.A survey of point matching techniques and a new approach to point pattern recognition [A].Proceedings of 1992 South African Symposium on Communications and Signal Processing[C].Cape Town,South African: IEEE,1992.243-248.
  • 10Shinji Umeyama.Least-Squares estimation of transformation parameters between two point patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(4):376-380.

共引文献111

同被引文献202

引证文献19

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部