摘要
本文给出了三种自由半群作用的动力系统的拓扑熵的定义,首先证明了这三种定义的等价性.在此定义的基础上对拓扑熵性质进行了讨论.主要包括以下结论:在等度拓扑共轭下拓扑熵的不变性以及这种拓扑熵的powerrule性质.
In this paper,we define the entropy and preimage entropy of free semigroup actions in a new method. Based on these definitions,we get some relations between topological entropy and measure entropy,and the relations among kinds of preimage entropies. The main results of this paper are as follows:(1)The topological entropy is invariant under equi- conjugacy;(2)The power rule for the measure-theoretic entropy holds.
作者
张文达
薛丽翠
Zhang Wenda;Xue Licui(College of Mathematics and Statistics,Chongqing Jiaotong University,Chongqing 400074,China;College of Mathematics and Information Science,Hebei Normal University,Shijiazhuang 050024,China)
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2019年第2期61-64,共4页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金(11501066)
重庆市教委项目(KJ1705122)
关键词
自由半群作用
生成集
分离集
开覆盖
拓扑熵
等度拓扑共轭
free semigroup action
separated set
spanning set
open cover
topological entropy
equitopological conjugate