期刊文献+

基于主曲线相似度的轴承健康状态评估方法 被引量:7

Evaluation Method of Bearing Health State Based on Similarity of Principal Curve
下载PDF
导出
摘要 为了更有效地评估滚动轴承性能退化程度,提出了基于流形空间主曲线相似度的状态评估方法。首先,结合轴承振动信号自身特点,进行高维特征提取,利用流形学习算法拉普拉斯特征映射(Laplacian eigenmaps,简称LE)将原高维特征空间转换至低维空间;其次,利用软-K主曲线算法提取样本主曲线;最后,结合离散Frechet距离做出状态评估曲线。通过滚动轴承全寿命实验进行对比分析,所提方法相对隐马尔科夫链模型(hidden Markov model,简称HMM)、深度信念网络(deep belief networks,简称DBN)等方法,能更早地发现设备的早期故障,且可以对滚动轴承健康状态进行定量评估。 In order to more effectively assess bearing performance degradation degree,a rolling bearing state evaluation method is proposed based on the similarity of the main manifold space curve.The high dimensional feature of vibration signal is extracted and then is converted to low dimensional space using the manifold learning algorithm of Laplacian eigenmaps(LE).Then samples from the curve according to soft-Kprincipal curve algorithm are combined with the discrete Frechet distance to plot the condition assessment curve.Comparing with the hidden Markov model(HMM),deep belief network(DBN)method,small breakdown of equipment could be detected earlier,and the health state quantitative assessment of a rolling bearing is achieved.
作者 尹爱军 梁子晓 张波 王冬磊 YIN Atjun;LIANGZixiao;ZHANG Bo;WANG Donglei(State Key Laboratory of Mechanical Transmissions, Chongqing University Chongqing, 400044, China;Southwest Oil and Gasfield Company-Chongqing Gas District Chongqing, 400021, China;Institute of Chemical Materials, China Academy of Engineering Physics Chengdu, 621900, China)
出处 《振动.测试与诊断》 EI CSCD 北大核心 2019年第3期625-630,676,共7页 Journal of Vibration,Measurement & Diagnosis
基金 国防基础科研重点资助项目(JCKY2016209B008) 重庆市人工智能技术创新重大主题专项重点资助项目(cstc2017rgzn-zdyfx0007)
关键词 状态评估 滚动轴承 主曲线 离散Frechet距离 性能退化程度 state evaluation rolling bearing principal curves discrete Frechet distance degree of performance degradation
  • 相关文献

参考文献10

二级参考文献124

共引文献258

同被引文献87

引证文献7

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部