期刊文献+

基于RBF神经网络的无人水面舰艇自适应控制 被引量:4

Adaptive Control of Unmanned Surface Vessels Based on RBF Neural Network
下载PDF
导出
摘要 研究了一个3自由度(DOF)无人水面舰艇的轨迹追踪控制问题,具有不确定性的动力学模型和不可预测的外部扰动使其数学模型很难被精确获得。提出了利用径向基函数神经网络的设计,通过反推的方式,设计了一个稳定的自适应神经网络控制器,达到设定轨迹控制和所有信号有界的目标。通过李雅普诺夫稳定定律证明了该未知系统的稳定性。仿真结果证实了该控制的有效性。 The trajectory tracking control for an uncertain 3-DOF unmanned surface vessels is studied in this paper.Due to the uncertainty of its dynamic model and inscrutabilily of the external disturbance,it is hard to obtain its accurate mathematical model.An adaptive radial basis function neural network is proposed,which is used to design the system.Via the method of backstepping,a stable adaptive NN controller is designed to achieve the proscribed tracking performances and ensure the boundedness of all the signals.Subsequently,the stability of the unknown system is guaranteed via Lyaponov’s stability theory.The simulation results are used to demonstrate the effectiveness of the proposed control.
作者 夏俊 XIA Jun(School of Electric Power,South China University of Technology,Guangzhou 510640,China)
出处 《机械制造与自动化》 2019年第3期185-188,共4页 Machine Building & Automation
关键词 自适应神经网络控制 径向基函数 无人水面舰艇 设定规矩追踪 障碍李雅普诺夫 adaptive neural network control radial basis function unmanned surface vessels prescribed trajectory tracking Barrier Lyapunov function
  • 相关文献

同被引文献18

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部