期刊文献+

Cahn-Hilliard方程的动态分歧

Dynamic bifurcation of Cahn-Hilliard equation
下载PDF
导出
摘要 利用线性全连续场的谱理论,中心流形约化方法与非线性耗散系统吸引子分歧理论,研究了Cahn-Hilliard方程的动态分歧,给出了发生分歧的条件及临界点,并给出了在Neumann边界条件下,方程分歧出的稳定奇点吸引子和鞍点的表达式. With the guidance of spectrum theory of the linear completely continuous fields, center manifolds reduction method and transition theory of nonlinear dissipative system, this paper invests dynamic bifurcation of Cahn-Hilliard equation. The conditions of the divergence, its critical point and the expression of the stable singularity attractor and saddle points of the equation with Neumann boundary condition are given in this paper.
作者 武瑞丽 柴容倩 钱小瑞 Wu Ruili;Chai Rongqian;Qian Xiaorui(Department of Mathematics,Jincheng College of sichuan university,Chengdu 611731,China)
出处 《纯粹数学与应用数学》 2019年第2期245-252,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11701399)
关键词 线性全连续场的谱理论 中心流形约化 吸引子分歧理论 CAHN-HILLIARD方程 spectrum theory of the linear completely continuous fields center manifolds reduction transition theory Cahn-Hilliard equation
  • 相关文献

参考文献6

二级参考文献45

  • 1王素云,李德生,张艳红.Cahn-Hilliard方程强解的全局吸引子[J].兰州大学学报(自然科学版),2005,41(5):134-137. 被引量:9
  • 2钟吉玉.关于Kuramoto-Sivashinsky方程平衡解的分岔问题[J].四川大学学报(自然科学版),2006,43(2):277-280. 被引量:6
  • 3赵春色,刘迎东.具有扩散项的SIR模型的动力学[J].北京交通大学学报,2007,31(3):84-86. 被引量:3
  • 4郑燕 魏纯辉.一类高次自催化反应扩散方程的动态分歧.四川大学学报:自然科学版,2009,:46-48.
  • 5Chow, S. N. & Hale, J. K., Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Science), Vol. 251, Springer-Verlag, New York,1982.
  • 6Constantin, P. & Foias, C., The Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.
  • 7Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol.840, Springer-Verlag, Berlin, 1981.
  • 8Hirsch, M. W., Pugh, C. C. & Shub, M., Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583,Springer-Verlag, Berlin, 1977.
  • 9Hurewicz, W. & Wallman, H., Dimension Theory, Princeton Mathematical Series, Vol. 4, Princeton University Press, Princeton, N. J., 1941.
  • 10Ma, T. & Wang, S. H., Structural classification and stability of incompressible vector fields, Physica D, 171(2002), 107-126.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部