摘要
利用线性全连续场的谱理论,中心流形约化方法与非线性耗散系统吸引子分歧理论,研究了Cahn-Hilliard方程的动态分歧,给出了发生分歧的条件及临界点,并给出了在Neumann边界条件下,方程分歧出的稳定奇点吸引子和鞍点的表达式.
With the guidance of spectrum theory of the linear completely continuous fields, center manifolds reduction method and transition theory of nonlinear dissipative system, this paper invests dynamic bifurcation of Cahn-Hilliard equation. The conditions of the divergence, its critical point and the expression of the stable singularity attractor and saddle points of the equation with Neumann boundary condition are given in this paper.
作者
武瑞丽
柴容倩
钱小瑞
Wu Ruili;Chai Rongqian;Qian Xiaorui(Department of Mathematics,Jincheng College of sichuan university,Chengdu 611731,China)
出处
《纯粹数学与应用数学》
2019年第2期245-252,共8页
Pure and Applied Mathematics
基金
国家自然科学基金(11701399)