期刊文献+

基于大数据集域自适应快速算法的图像特征智能识别模型构建 被引量:7

Image feature intelligent recognition model based on large dataset domain adaptive fast algorithm
原文传递
导出
摘要 通常采用图像特征智能识别以提高对图像高频成分的识别度。基于大数据集域自适应快速算法构建图像特征智能识别模型。在图像特征智能识别模型构建过程中,对于图像特征智能识别过程中容易产生伪图像特征识别、细节性模糊与图像特征智能识别的不间断性问题,使用大数据集域自适应快速算法可以提高图像特征智能识别的效率。经过实验表明,基于大数据集域自适应快速算法的识别特征模型能够有效提升微小图像特征平均识别率,且鲁棒性较好。 The ultimate goal of intelligent recognition using image features is to increase the high-frequency components in intelligent recognition of image features(IRIF).In this paper,an intelligent recognition model of image feature based on large data domain adaptive fast algorithm(LDDAFA)is proposed.In the model structure,a large data domain adaptive fast algorithm is introduced in the construction of image feature intelligent recognition model,and the feature recognition and detail can be easily produced in the process of intelligent image recognition.In order to solve the problem of fuzzy and intelligent recognition of image features,the adaptive algorithm of large datasets is applied to intelligent recognition and detection of image features.The experiment shows that the recognition feature model building method based on the large data domain adaptive fast algorithm can accurately identify the signal to the SNR of different sags and ensure that the recognition accuracy can be improved effectively under the condition of low signal to noise ratio.
作者 王鹏宇 曾路 吴漾 Wang Pengyu;Zeng Lu;Wu Yang(Information Center,Guizhou Power Grid Corporation Ltd.,Guizhou 550002,China)
出处 《国外电子测量技术》 2019年第4期7-11,共5页 Foreign Electronic Measurement Technology
关键词 图像特征智能识别模型 振铃效应 大数据集域 自适应快速算法 intelligent recognition model of image features ringing effect large data set domain adaptive fast algorithm
  • 相关文献

参考文献3

二级参考文献38

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2郝颖明,朱枫.2维Otsu自适应阈值的快速算法[J].中国图象图形学报(A辑),2005,10(4):484-488. 被引量:121
  • 3吴亚东,张红英,吴斌.数字图像修复技术[M].北京:科学出版社,2010.
  • 4张平,檀结庆,何蕾.基于离散小波变换的图像修补方法[J].计算机应用研究,2007,24(9):287-289. 被引量:9
  • 5Wang Chao, Ye Zhongfu. Brightness Preserving Histogram Equali- zation with Maximum Entropy: A Variational Perspective[J]. IEEE Transactions on Consumer Electronics, 2005, 51(4): 1326-1334.
  • 6Kim Yeong-Taeg. Contrast Enhancement Using Brightness Pre- serving Bi-histogram Equalization[J]. IEEE Transactions on Consumer Electronics, 1997, 43( 1 ): 1-8.
  • 7Park Gyu-Hee, Cho Hwa-Hyun, Choi Myung-Ryul. A Contrast Enhancement Method Using Dynamic Range Separate Histogram Equalization[J]. IEEE Transactions on Consumer Electronics, 2008, 54(4): 1981-1987.
  • 8Chen H O, Kong N S P, lbrahim H. Bi-Histogram Equalization with a Plateau Limit tbr Digital Image Enhancement[J]. IEEE Transactions on Consumer Electronics, 2009, 55(4): 2072-2080.
  • 9Deng Guang, Cahill L W, Tohin G R. The Study of Logarithmic Image Processing Model and Its Application to Image Enhancement[J]. IEEE Transactions on Image Processing, 1995, 4(4): 506-512.
  • 10Panetta K, Agaian S, Zhou Yicong, et al. Parameterized Logar- ithmic Framework for Image Enhancement[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(2): 460-473.

共引文献12

同被引文献67

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部