期刊文献+

基于改进卷积神经网络的铁轨伤损图像识别 被引量:5

Recognition of Track Damage Images Based on Improved Convolution Neural Network
下载PDF
导出
摘要 铁轨探伤技术的可靠性关系到铁路运行的安全性。分析BP神经网络、卷积神经网络算法在图片识别中的优势,提出一种结合BP、卷积网络的新算法应用于铁轨伤损检测。改进算法利用卷积神经网络对铁轨样本进行特征提取,仅一次前向运算获得低维度铁轨图,再由BP神经网络对低维度铁轨图特征进行分类训练与测试。实验结果表明,改进算法在已训练好的模型测试中得到较好的误差收敛曲线与较高的测试精度,与BP算法、卷积算法相比,该算法训练时间更少,对铁轨伤损图片识别效果更好,在铁轨伤损检测方面有较好的应用前景。 The reliability of rail flaw detection technology is related to the safety of railway operation.The advantages of BP neural network and convolution neural network(CNN)algorithm in image recognition are analyzed,and a new algorithm combining with BP and convolution network is applied to detect the damage of railway tracks.The CNN is used to extract the feature of the rail sample,and the low dimension rail map is obtained by only one forward operation.Then the BP neural network is used to train and test the characteristics of low-dimensional track.The experimental results show that the improved algorithm obtains better error convergence curve and higher test precision in the trained model test.Compared with BP algorithm and convolution algorithm,the algorithm has less training time and better recognition of rail damage images,so has a good prospect in the field of rail flaw detection.
作者 江白华 张亚 曾文文 JIANG Bai-hua;ZHANG Ya;ZENG Wen-wen(School of Electrical and Information Engineering,Anhui University of Science & Technology,Huainan 232000,China)
出处 《测控技术》 2019年第6期19-22,27,共5页 Measurement & Control Technology
基金 安徽省自然科学基金(1708085QF135) 安徽省高校自然科学基金(KJ2017A077) 安徽理工大学研究生创新基金项目(2017CX2093)
关键词 铁轨探伤 特征提取 卷积神经网络 BP神经网络 rail flaw detection feature extraction convolutional neural network BP neural network
  • 相关文献

参考文献9

二级参考文献140

  • 1王钰,郭其一,李维刚.基于改进BP神经网络的预测模型及其应用[J].计算机测量与控制,2005,13(1):39-42. 被引量:87
  • 2蔡彬,陈德桂,吴锐,王鑫伟,高冬梅,陈卫国.开关柜内部故障电弧的在线检测和保护装置[J].电工技术学报,2005,20(10):83-87. 被引量:79
  • 3迟晓君,孟庆春.基于投影特征值的车牌字符分割算法[J].计算机应用研究,2006,23(7):256-257. 被引量:60
  • 4冈萨雷斯.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2007:427.
  • 5李小鹏,严严,章毓晋.若干背景建模方法的分析和比较[C].第十三届全国图象图形学学术会议,2006:482-486.
  • 6杜彦良,牛学勤.现代轨道交通技术与装备[M].北京:科学出版社,2012.
  • 7Li Qingyong,Ren Shengwei.A real-time visual inspection system for discrete surface defects of rail heads[J].IEEE Transactions on Instrumentation and Measurement,2012,61(8):2189-2199.
  • 8Li Qingyong,Ren Shengwei.A visual detection system for rail surface defects[J].IEEE Transactions on Systems,Man,and Cybernetics—Part C:Applications and Reviews,2012,42(6):1531-1542.
  • 9Tang Jinshan,Peli Eli.Image enhancement using a contrast measure in the compressed domain[J].IEEE Signal Processing Letters,2003,10(10):289-292.
  • 10Zhu Youlian,Huang Cheng.An adaptive histogram equalization algorithm on the image gray level mapping[C]∥2012 International Conference on Solid State Devices and Materials Science,2012:601-608.

共引文献1060

同被引文献41

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部