期刊文献+

基于标记配对相干态光源的测量设备无关量子密钥分配 被引量:3

Measurement-device-independent quantum key distribution with a heralded pair coherent state photon source
下载PDF
导出
摘要 为提升量子密钥分配的性能,基于标记配对相干态光源,提出了一种四强度诱骗态测量设备无关量子密钥分配方案。首先,利用光源的双模态特性和光子数标记技术来提升传输性能,推导了单光子对计数率下限和误码率上限的计算公式;然后,考虑统计波动,分析了数据长度有限对方案性能的影响。数值仿真结果表明:基于标记配对相干态光源的测量设备无关量子密钥分配方案在安全传输距离和密钥生成效率上都优于现有基于弱相干态光源和预报单光子源的测量设备无关量子密钥分配方案;在统计波动条件下,方案性能会随着数据长度的减少而降低,但即使数据长度减少到10^10,基于标记配对相干态光源的测量设备无关量子密钥分配方案的最大传输损耗容忍度仍可达36 dB,优于现有的其他方案。 Based on a heralded pair coherent state photon source(HPCS),a measurement-device-independent quantum key distribution(MDI-QKD)with four-intensity decoy-state method is proposed to improve the performance of QKD.The transmission performance is improved by the technique of heralded photon number based on the HPCS′s two-mode characteristic.The yield′s lower bound and the error rate′s upper bound of the single-photon pairs are deduced.The influence of finite data on the transmission performance is analyzed in consideration of the statistical fluctuation.The simulation results show that the key generation rate and secure transmission distance of the MDI-QKD with a HPCS are better than that of the weak coherent state(WCS)and the heralded single photon source(HSPS).Under the condition of statistical fluctuation,the performance will descend with the decrease of the data size.However,the loss tolerance of the HPCS MDI-QKD can reach 36 dB when data size is 1010,which is better than other MDI-QKD methods.
作者 周媛媛 徐华彬 程康 王潋 ZHOU Yuan-yuan;XU Hua-bin;CHENG Kang;WANG Lian(College of Electronic Engineering,Naval Univ. of Engineering,Wuhan 430033,China)
出处 《海军工程大学学报》 CAS 北大核心 2019年第3期1-5,共5页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(61302099)
关键词 量子光学 测量设备无关量子密钥分配 标记配对相干态光源 统计波动 quantum optics measurement-device-independent quantum key distribution heralded pair coherent state photon source statistical fluctuation
  • 相关文献

参考文献2

二级参考文献39

  • 1Bennett C H, Brassard G 1984 Processing oflEEE International Con- ference on Computers, Systems, and Signal Processing (New York: IEEE) p175.
  • 2Wang X B 2005 Phys. Rev. Lett. 94 230503.
  • 3Hwang W Y 2003 Phys. Rev. Lett. 91 057901.
  • 4Lo H K, Ma X E Chen K 2005 Phys. Rev. Lett. 94 230504.
  • 5Ma X E Qi B, Zhao Y, Lo H K 2005 Phys. Rev. A 72 012326.
  • 6Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312.
  • 7Yin Z Q, Han Z E Sun F W, Guo G C 2007 Phys. Rev. A 76 014304.
  • 8Zhang S L, Zou X B, Li K, Jin C H, Guo G C 2007 Phys. Rev. A 76.044304.
  • 9Mi J L, Wang F Q, Lin Q Q, Liang R S, Liu S H 2008 Acta Phys. Sin. 57 678.
  • 10Quart D X, Pei C X, Zhu C H, Liu D 2008 Acta Phys. Sin. 57 5600.

共引文献9

同被引文献36

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部