期刊文献+

一种适用计算声学问题的网格间断人工黏性分布策略

An artificial viscous distribution strategy of grid discontinuity for computational aero-acoustic problems
下载PDF
导出
摘要 在计算声学数值模拟过程中,当空间离散采用高阶有限差分格式时,在网格间断处易出现短波发散问题,易污染整个计算域的数值解。针对该问题,在对称模板DRP格式的基础上,探索了曲线坐标系下交界面、奇异点等间断处人工黏性添加策略;经过初始扰动绕圆柱传播算例的计算对比分析表明:声波随着时间推移,向空间逐步散开;当声波到达圆柱时,声波会发生部分反射现象,形成二次声源向空间传播,整个计算过程中未出现计算发散现象。研究结果表明,提出的人工黏性分布策略能有效解决间断处短波发散问题,为复杂构型的声场模拟提供技术支撑。 In computational acoustic numerical simulation processes, when a high-order finite difference scheme is used to do spatial discretization, short wave divergence problems are easy to occur at places of grid discontinuity to contaminate numerical solutions in the whole computational domain. Here, aiming at this problem, based on the symmetric template DRP scheme, the artificial viscous distribution strategy was explored at discontinuous places of interface surface and singular points, etc., under a curvilinear coordinate system. Through contrastively calculating an initial acoustic disturbance propagating around a cylinder, the analysis results showed that sound wave gradually disperses in space over time;when sound wave reaches a cylinder, sound wave partially reflects to form a secondary sound source to spread sound wave into space again;computation divergence phenomena don,t happen in the whole computation process;so the proposed artificial viscous distribution strategy can effectively solve short wave divergence problems at discontinuous places, and provide a technical support for sound field simulations with complex configuration.
作者 王鑫 余培汛 杨海 潘凯 WANG Xin;YU Peixun;YANG Hai;PAN Kai(Lab of Aeronautical Acoustics and Dynamics, Aircraft Strength Research Institute ofChina, Xi'an 710065 , China)
出处 《振动与冲击》 EI CSCD 北大核心 2019年第11期95-100,共6页 Journal of Vibration and Shock
关键词 短波 网格间断 声波 人工黏性 圆柱 short wave grid discontinuity sound wave artificial viscous cylinder
  • 相关文献

参考文献2

二级参考文献17

  • 1StaRlings R L, Jr, Forrest D K, Jr. Separation characteristics of internally carried stores at supersonic speeds[R]. NASA TP-2993, 1990.
  • 2Wilcox F J, Jr. Experimental investigation of porous floor effects on cavity flow fields at supersonic speeds [R]. NASA TP-3032, 1990 .
  • 3MeGrath S F, Shaw L L, Jr. Active control of shallow cavity acoustic resonance[R]. AIAA-1996-1949, 1996.
  • 4Shaw L. Active control for cavity acoustics[R]. AIAA- 1998-2347, 1998.
  • 5Michael J A. Control of cavity resonance through very high frequency forcing[R]. AIAA-2000-1905, 2000.
  • 6Cattafesta L, Williams D R, Rowley C W, et al. Review of active control of flow-induced cavity resonance [R]. AIAA-2003-3567 , 2003.
  • 7Smith B R, Welterlen T J, Maines B H, et al. Weapons bay acoustic suppression from rod spoilers[R]. AIAA- 2002- 0662, 2002.
  • 8Arunajatesan S, Shipman J D, Sinha N, et al. Mechanisms in high frequency control of cavity flows[R]. AIAA-2003- 0005, 2003.
  • 9Ukeiley L S, Ponton M N, Seiner J M, et al. Suppression of pressure loads in cavity flows[J]. AIAA Journal, 2004, 42(1): 70 -79.
  • 10Schmit R F, Schwartz D R, Kibens K, et al. High and low frequency actuation comparison for a weapons hay cavity[R]. AIAA-2005- 0795, 2005.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部