期刊文献+

加权特征融合的密集连接网络人脸识别算法 被引量:9

Densely Connected Convolutional Networks Face Recognition Algorithm Based on Weighted Feature Fusion
下载PDF
导出
摘要 在非约束条件下人脸识别常受到表情变化、视角偏差、不同程度的遮挡和曝光等各种综合因素的影响;并且深度卷积神经网络几乎都存在参数过多,训练时梯度扩散或消失等问题。针对上述问题,提出了FuseNet网络模型。该模型有效地利用了人的眼睛、鼻子、嘴巴等局部特征信息,同时又包含面部轮廓等全局特征信息,并提出了多损失函数进一步缩小类内特征差距和扩大类间特征距离,有效地增强了非约束条件下人脸识别的鲁棒性。通过使用加权密集连接卷积神经网络来提取人脸的全局特征,密集连接模块可有效地解决深层网络所引起的参数冗余以及梯度扩散等问题。不同的连接权值使得网络能够充分地利用各部分特征。实验结果表明,无论是在闭集的CASIA-WebFace数据集上,还是开集的FLW数据集、MegaFace数据集上,提出的FuseNet网络都具有较好的识别率和泛化能力。 In unconstraint condition, face recognition is usually affected by expression change, angle deviation, occlusion and exposure in different degrees, also other comprehensive factors. At the same time, interfering factors exist in deep convolutional neural networks, such as lots of parameters, gradient diffusion or disappearance during training. To solve mentioned concerns, this paper proposes a FuseNet network model, which effectively utilizes local feature information such as eyes, nose and mouth as well as global feature information like facial contour, and puts forward the multi-loss function to reduce the gap between the class features and increase further distance between class characteristics, which effectively enhances the robustness of face recognition under constraint conditions. The weighted, densely connected convolutional neural network, is adapted to extract the global features of faces in which densely connected module effectively solves the problem like parameter redundancy and gradient diffusion caused by the deep network. Additionally, proposed different connection weights enable the network to make full use of selected characteristics. The experimental results show that the proposed FuseNet network achieves better recognition rate and robustness, not only in the closed CASIA-WebFace dataset, but also in open FLW dataset and MegaFace dataset.
作者 王小玉 韩昌林 胡鑫豪 WANG Xiaoyu;HAN Changlin;HU Xinhao(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
出处 《计算机科学与探索》 CSCD 北大核心 2019年第7期1195-1205,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.60572153,60972127 黑龙江省教育厅科学技术项目No.12541177~~
关键词 人脸识别 加权密集连接 加权特征融合 多损失函数 face recognition weighted densely connected weighted feature fusion multi-loss function
  • 相关文献

参考文献2

二级参考文献17

  • 1曹丽,陈才扣.最大散度差无监督鉴别特征抽取与人脸识别[J].计算机应用,2008,28(S2):182-184. 被引量:2
  • 2宋刚,艾海舟,徐光祐.纹理约束下的人脸特征点跟踪[J].软件学报,2004,15(11):1607-1615. 被引量:15
  • 3叶伊松,武妍.基于ICA和NFL分类的局部人脸识别方法[J].中国图象图形学报(A辑),2005,10(4):468-472. 被引量:6
  • 4徐勇,张重阳,杨静宇.基于主分量特征与独立分量特征的人脸识别实验[J].计算机工程与设计,2005,26(5):1155-1157. 被引量:9
  • 5姚雪梅,古丽拉.阿东别克.基于ICA和SVM的局部人脸识别方法[J].现代计算机,2005,11(12):15-16. 被引量:2
  • 6Rose K. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems [J]. Proceedings of the IEEE, 1998, 86(11): 2210-2239
  • 7Moghaddam B. Principal manifolds and probabilistic subspaces for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 780-788
  • 8Wiskott L, Fellous J, Kruger N. Face recognition by elastic bunch graph matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 775-779
  • 9Tefas A, Kotropoulos C, Pitas L. Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (7) : 735- 746
  • 10Mottl V, Kostin A, Seredin O, et al. Support object classifiers with rigid and elastic kernel functions for face identification [C]//Proceedings of the 16th International Conference on Pattern Recognition, Quebec City, 2002:205-208

共引文献17

同被引文献120

引证文献9

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部