期刊文献+

黏弹性松弛函数的积分表示(英文)

Integral representation of the viscoelastic relaxation function
下载PDF
导出
摘要 讨论了松弛函数的积分表示.用Laplace变换方法得到了Maxwell模型的应力应变关系方程,方程中的松弛函数可以用Mittag-Leffler函数表示.由于大的负变元的存在,计算起来非常困难,运用连续松驰谱法将Mittag-Leffler函数用积分的形式来表示,从而解决了这个问题.通过数值算例说明了该结果的有效性. In this paper, the integral representation of relaxation function is discussed. The stress-strain relationship equation of Maxwell model is obtained by Laplace transformation. The relaxation function in the equation can be expressed by Mittag-Leffler function. Because of the existence of large negative arguments, it is very difficult to calculate. We use the continuous relaxation spectrum to express the Mittag-Leffler function in integral form. This problem has been solved. A numerical example illustrates the effectiveness of the result.
作者 修国众 王丽英 时宝 贺英政 XIU Guozhong;WANG Liying;SHI Bao;HE Yingzheng(Institute of System Science and Mathematics,Naval Aeronautical University,Yantai 264001,Shandong,China;Coastal Defense College,Naval Aeronautical University,Yantai 264001,Shandong,China)
出处 《上海师范大学学报(自然科学版)》 2019年第3期242-251,218,共10页 Journal of Shanghai Normal University(Natural Sciences)
关键词 Maxwell模型 黏弹性松弛函数 Mittag-Leffler函数 分数阶导数 Maxwell model viscoelastic relaxation function Mittag-Leffler function fractional derivative
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部