期刊文献+

一类2次多项式混沌系统的均匀化方法研究 被引量:3

Homogenization Method for the Quadratic Polynomial Chaotic System
下载PDF
导出
摘要 该文给出了一般的2次多项式混沌系统与Tent映射拓扑共轭的充分条件,并依据该条件,给出了一类2次多项式混沌系统及其概率密度函数;进一步得到了能够将这类系统均匀化的变换函数;给出了一个新的2次多项式混沌系统并进行均匀化处理,对其产生的序列进行了信息熵、Kolmogorov熵和离散熵分析,结果显示该均匀化方法的均匀化效果显著且不改变序列混沌程度。 A sufficient condition for general quadratic polynomial systems to be topologically conjugate with Tent map is proposed.Base on this condition,the probability density function of a class of quadratic polynomial systems is provided and transformations function which can homogenize this class of chaotic systems is further obtained.The performances of both the original system and the homogenized system are evaluated.Numerical simulations show that the information entropy of the uniformly distributed sequences is closer to the theoretical limit and its discrete entropy remains unchanged.In conclusion,with such homogenization method all the chaotic characteristics of the original system is inherited and better uniformity is performed.
作者 臧鸿雁 黄慧芳 柴宏玉 ZANG Hongyan;HUANG Huifang;CHAI Hongyu(School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China;School of Information Science and Technology,Xiamen University Tan Kah Kee College,Zhangzhou 363105,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第7期1618-1624,共7页 Journal of Electronics & Information Technology
基金 中央高校基本科研业务费专项基金(06108236)~~
关键词 混沌系统 均匀化 拓扑共轭 Chaotic system Homogenization Topologically conjugate Entropy
  • 相关文献

参考文献4

二级参考文献25

  • 1盛利元,曹莉凌,孙克辉,闻姜.基于TD-ERCS混沌系统的伪随机数发生器及其统计特性分析[J].物理学报,2005,54(9):4031-4037. 被引量:37
  • 2王蕾,汪芙平,王赞基.一种新型的混沌伪随机数发生器[J].物理学报,2006,55(8):3964-3968. 被引量:31
  • 3Li T Y, Yorke J A. Period three implies chaos [J]. Amer Math Monthly, 1975, 82: 985.
  • 4Zhang W N, Agarwal R P. Construction of mappings with attracting cycles [J]. Comput Math Appl, 2003, 45: 1213.
  • 5Zhou Z . Periodic orbits on dynamical systems [J]. Comput Math Appl, 2003, 45: 935.
  • 6张伟年.动力系统基础[M].北京:高等教育出版社,2000.
  • 7Yang L. Recent advance on determining the number of real roots of parametric polynomials [J]. Journal Symbolic Comput, 1999, 28: 225.
  • 8Luby M. LT codes[C]. Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, CA, 2002: 271-282.
  • 9Makay D J. Fountain codes[J]. Proceedings of IEEE, Communications, 2005, 152(6): 1062-1068.
  • 10Park Dohyung and Chung Sae-Young. Performance- complexity tradeoffs of rateless codes [C]. 2008 IEEE International Symposium on Information Theory, Toronto, CA, 2008, 7: 2056-2060.

共引文献22

同被引文献22

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部