期刊文献+

基于GST的变速机械故障信号稀疏特征提取方法 被引量:4

Sparse Feature Extraction for Variable Speed Machinery Based on Sparse Decomposition Combined GST
下载PDF
导出
摘要 为提取强噪声背景下的变速旋转机械设备的冲击故障特征,提出了一种基于广义S变换的稀疏特征提取方法.首先,通过多分辨率广义S变换(multiresolution generalized S-transform,MGST)搜索每次迭代过程中的最佳原子,多分辨率广义S变换可以得到信号不同尺度下的归一化时频谱,并从中找出能量最大值及其所对应的时频因子,根据故障冗余字典的构建模型可得到冲击成分的最佳匹配原子.其次,结合正交匹配追踪算法(orthogonal matching pursuit,OMP),计算出信号在原子集合下的投影,由于采用了基于多分辨率广义S变换的原子搜索策略,大幅度提高了OMP的分解效率.最后,根据稀疏表示中第一个冲击信号的出现时刻,可依次计算出冲击信号在变速情况下的出现时刻理论值,通过与实测值的比较,实现变速机械的故障诊断.仿真和实例分析结果表明,该方法比传统OMP方法和广义S变换具有更高的计算效率和定位精度. In order to extract fault impulse feature of variable speed machinery from strong background noise,a sparse feature extraction method based on sparse decomposition combined generalized S transform(GST)was proposed in this paper.Firstly,multi-resolution generalized S transform(MGST)was used to pursuit the optimal atom in each iteration,to get normalized time-frequency spectrums with different scales,and to find the maximum energy and corresponding time-frequency factors to build an optimal atom.Then,an orthogonal matching pursuit(OMP)was used to decompose the signal into several optimal atoms,and the efficiency of atoms pursuit was improved with MGST.Finally,the theoretical locations of impulses were calculated according to the location of first impulse in the sparse representation signal,and the fault was diagnosed through the comparison of theoretical and measured locations.The results of simulation and experiment validate the performances of the proposed method,being better than traditional GST method and OMP method in precision and decomposition speed.
作者 严保康 周凤星 徐波 YAN Bao-kang;ZHOU Feng-xing;XU Bo(Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System,Wuhan University of Science and Technology,Wuhan,Hubei 430081,China;Engineering ResearchCenter for Metallurgical Automation and Measurement Technology of Ministry of Education,Wuhan University of Science and Technology,Wuhan,Hubei 430081,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第6期603-608,共6页 Transactions of Beijing Institute of Technology
基金 武汉科技大学智能信息处理与实时工业系统湖北省重点实验室基金资助项目(znxx2018QN05) 湖北省教育厅科研计划资助项目(B2016006)
关键词 特征提取 广义S变换 稀疏分解 正交匹配追踪 feature extraction generalized S transform sparse decomposition orthogonal matching pursuit(OMP)
  • 相关文献

参考文献1

二级参考文献8

  • 1范虹,孟庆丰,张优云,冯武卫,高强.基于改进匹配追踪算法的特征提取及其应用[J].机械工程学报,2007,43(7):115-119. 被引量:14
  • 2MALLAT S G,ZHANG Zhifeng.Matching pursuit with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
  • 3YANG Bin,LI Shutao.Pixel-level image fusion with simultaneous orthogonal matching pursuit[J].Information Fusion,2012,13(1):10-19.
  • 4DONOHO D L,TSAIG Y,DRORI I.Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J].IEEE Transactions on Information Theory,2012,58(2):1094-1121.
  • 5LIANG Wei,HUANG Zuoying.Sparse deconvolution method for improving the time-resolution of ultrasonic NDE signals[J].NDT&E International,2009,42(5):430-434.
  • 6JAFARI M G,PLUMBLEY M D.Fast dictionary learning for sparse representations of speech signals[J].IEEE Transactions on Signal Processing,2012,5(5):1025-1031.
  • 7栗茂林,梁霖,王孙安.基于稀疏表示的故障敏感特征提取方法[J].机械工程学报,2013,49(1):73-80. 被引量:22
  • 8王宏超,陈进,董广明.基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J].机械工程学报,2013,49(1):88-94. 被引量:140

共引文献17

同被引文献43

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部