期刊文献+

改进的Faster R-CNN方法及其在电缆隧道积水定位识别中的应用 被引量:7

Improved Faster R-CNN method and its application in recognition of cable tunnel water accumulation
下载PDF
导出
摘要 针对电缆隧道内积水的问题,提出了一种改进的基于区域建议的卷积神经网络(FasterR-CNN)方法,并将其应用在电缆隧道积水定位识别中。考虑到Softmax分类方法的正则化参数选取会引起概率计算产生问题,改用支持向量机(SVM)进行图像分类,以增强分类的置信度。使用区域建议网络(RPN)提取隧道积水原图中的区域建议,然后用FastR-CNN检测网络在建议框中进行图像识别、SVM分类和位置精修。实验结果表明,所提方法计算速度快、识别精度高,在实际工程中表现出较高的效率。 Aiming at the water accumulation problem in cable tunnel, an improved Faster R-CNN ( Faster Regionbased Convolutional Neural Network) method is proposed and applied in the recognition of cable tunnel water accumulation. Considering that the regularization parameter selection of Softmax may have problems with calculating the probability ,the SVM( Support Vector Machine) is used to classify images to improve the classification accuracy. The RPN ( Region Proposal Network) is used to extract proposals from the original images of cable tunnel water accumulation ,and then the detection network of Fast R-CNN is used to carry out image recognition, SVM classification and location refining. The experiment results show that the proposed algorithm has the advantages of fast calculation speed, high recognition accuracy and high efficiency in practical engineering.
作者 崔江静 黄顺涛 仇炜 裴星宇 朱五洲 孟安波 CUI Jiangjing;HUANG Shuntao;QIU Wei;PEI Xingyu;ZHU Wuzhou;MENG Anbo(Zhuhai Power Supply Bureau of Guangdong Power Grid,Zhuhai 519000,China;School of Automation,Guangdong University of Technology,Guangzhou 510006,China)
出处 《电力自动化设备》 EI CSCD 北大核心 2019年第7期219-223,共5页 Electric Power Automation Equipment
基金 广东电网有限责任公司科技项目(GDKJXM20162047)~~
关键词 电缆隧道 积水定位 区域建议 卷积神经网络 支持向量机 cable tunnel water accumulation recognition region proposal convolutional neural network support vector machines
  • 相关文献

参考文献8

二级参考文献87

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2田玲.基于层次分析法的购电方案模糊综合评价探讨[J].电网技术,2005,29(7):23-26. 被引量:37
  • 3宋晓芳,陈劲操.基于支持向量机的动态电能质量扰动分类方法[J].电力自动化设备,2006,26(4):39-42. 被引量:24
  • 4熊浩,孙才新,杜鹏,代姚,王谦.基于物元理论的电力变压器状态综合评估[J].重庆大学学报(自然科学版),2006,29(10):24-28. 被引量:50
  • 5TANG W H,SPURGE,WU Q H.An evidential reasoning approach to transformer condition assessments[J].IEEE Transctions on Power Delivery,2004,19(4):1696-1703.
  • 6国家电网公司.Q/GDW169-2008油浸式变压器(电抗器)状态评价导则[S].北京:中国电力出版社,2008.
  • 7VAPNIK V N,Statistical learning theory[M].New York,USA:John Wiley and Sons Inc,1998:1-100.
  • 8GUNN S R.Support vector machines for classification and regression[R].England:University of Southampton,1995.
  • 9WU Lizeng,ZHU Yongli,YUAN Jinsha.Application of multi agent and data mining techniques in condition assessment of transformers[C]//2004 International Conference on Power System Technology.Singapore:IEEE,2004:823-827.
  • 10ZHU Yongli,WU Lizeng,YUAN Jinsha.A transformer condition assessment framework based on data mining[C]//IEEE PES General Meeting 2005.San Francisco,USA:IEEE,2005:1875-1880.

共引文献2670

同被引文献77

引证文献7

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部