期刊文献+

基于主题融合和关联规则挖掘的图像标注 被引量:4

Image Annotation Based on Topic Fusion and Frequent Patterns Mining
下载PDF
导出
摘要 为减小“语义鸿沟”,在LDA主题模型的基础上,提出了一种主题融合和关联规则挖掘的图像标注方法。首先,针对视觉和文本信息的关联度不高的问题,引入基于向量机的多类别分类得到图像的类别信息。其次,通过文本模态的语义主题分布和类别信息,计算出图像类的文本主题分布。未知图像将其所属类的文本主题分布与其视觉主题分布进行加权融合,并以此概率模型计算初始标签集。最后依据初始标注词概率,利用关联规则挖掘和词间相关性挖掘文本关联度,从而得到精确化语义标注。在Corel5K图像数据集上进行对比实验,实验结果证明了方法的有效性。 In order to reduce the“semantic gap”,based on the LDA topic model,an image annotation approach which uses topics fusion and association rule mining was proposed.First,to solve the problem of low correlation between visual and text information,the vector machine-based multi-category classification is introduced to obtain the category information of the image.Then,the text topic distribution of the image class is calculated by the semantic topic distribution and classification information of the text modality.The unknown image weights the text topic distribution of its class and its visual topic distribution,and calculates the initial label set using this probability model.Finally,based on the probability of initial label words,the association rules mining and inter-word correlation are used to mine the text relevance to obtain precise semantic annotation.The comparative experiments were carried out on the Corel5K image dataset.The experimental results show the effectiveness of the proposed method.
作者 张蕾 蔡明 ZHANG Lei;CAI Ming(College of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《计算机科学》 CSCD 北大核心 2019年第7期246-251,共6页 Computer Science
关键词 图像标注 LDA主题模型 加权主题融合 关联规则挖掘 词间相关性 Image annotation LDA topic model Weighted topic fusion Frequent patterns mining Correlation of keyword.
  • 相关文献

参考文献12

二级参考文献96

  • 1Carneiro G, Chan A B, Moreno P J, Vasconcelos N. Supervised learning of semantic classes for image annotation and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 394-410.
  • 2Mori Y, Takahashi H, Oka R. Image-to-word transformation based on dividing and vector quantizing images with words. In: Proceedings of the International Workshop on Multimedia Intelligence Storage and Retrieval Management. Orlando, USA: Springer, 1999. 1-9.
  • 3Zhang Q N, Izquierdo E. Adaptive salient block-based image retrieval in multi-feature space. Image Communication, 2007, 22(6): 591-603.
  • 4Jeon J, Lavrenko V, Manmatha R. Automatic image anno- tation and retrieval using cross-media relevance models. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval. Toronto, Canada: ACM, 2003. 119-126.
  • 5Liu J, Wang B, Lu H, Ma S. A graph-based image annotation framework. Pattern Recognition Letters, 2008, 29(4): 407-415.
  • 6Kokkinos I, Maragos P. Synergy between object recognition and image segmentation using the expectation-maximization algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(8): 1486--1501.
  • 7Jung J J. Exploiting semantic annotation to supporting user browsing on the web. Knowledge-Based Systems, 2007, 20(4): 373-381.
  • 8Fan J P, Gao Y L, Luo H Z, Xu G Y. Statistical modeling and conceptualization of natural images. Pattern Recognition, 2005, 38(6): 865-885.
  • 9Spirkovska L. A Summary of Image Segmentation Techniques, NASA Technical Memorandum 104022, Ames Research Center, USA, 1993.
  • 10Blekas K, Likas A, Galatsanos N, Lagaris I. A spatiallyconstrained mixture model for image segmentation. IEEE Transactions on Neural Network, 2005, 16(2): 494-498.

共引文献90

同被引文献31

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部