期刊文献+

可用于建筑采暖的槽式复合抛物面聚光器光热特性研究 被引量:5

Study on thermal performance of a trough compound parabolic concentrator for solar air heating system
下载PDF
导出
摘要 文章针对太阳能建筑采暖系统集热面积大、换热介质抗冻能力差的问题,设计了一种新型的槽式复合抛物面聚光建筑采暖系统,并分析了该系统中槽式复合抛物面聚光器的聚光原理。文章还建立了槽式复合抛物面聚光器的三维模型,而后利用光学仿真软件分析该聚光器的聚光性能,并搭建试验台研究空气流速对该聚光器光热转化效率的影响。分析结果表明:在光线入射偏角为10°的条件下,当接收体中心与聚光器底部的间距为90mm时,槽式复合抛物面聚光器的光线接收率和聚光效率最优,分别为65.54%和60.25%;在实际天气条件下,槽式复合抛物面聚光器光热转化效率随空气流速增加而升高,当空气流速为4m/s时,该聚光器的光热转化效率达到最大值,为76.73%。 In order to overcome the defects of large collector area and be liable to leak of medium in solar heating system, a new type of trough compound parabolic concentrating system for building heating system is designed in this paper. The concentrating principle of the trough compound parabolic concentrator in the system is studied, the 3D model of the trough compound parabolic concentrator is established, and the concentrating performance of the concentrator is calculated and analyzed by using optical simulation software. Further, a testing platform was built and the effect of air velocity on the photo-thermal conversion efficiency of the concentrator was studied experimentally. The results show that when the distance between the center of the receiver and the bottom of the concentrator is 90 mm, the ray receiving rate and the concentrating efficiency of the trough compound parabolic concentrator are reach optimum value of 65.54% and 60.25% respectively, under the incident angle tracking error is 10 °. And the photo-thermal conversion efficiency of the concentrator increases with the increase of the air velocity in the actual weather conditions. When the air velocity is 4 m/s, the photo-thermal conversion efficiency of the trough compound parabolic concentrator reaches the maximum (76.73%).
作者 李建业 常泽辉 李怡暄 彭娅楠 李文龙 刘铮 Li Jianye;Chang Zehui;Li Yixuan;Peng Yanan;Li Wenlong;Liu Zheng(College of Energy and Power Engineering,Inner Mongolia University of Technology,Hohhot 010051,China;College of Architecture,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《可再生能源》 CAS 北大核心 2019年第7期978-983,共6页 Renewable Energy Resources
基金 国家自然科学基金(51666013) 内蒙古自治区科技重大专项(2018) 内蒙古自治区研究生科研创新项目(S2018111948Z) 内蒙古自治区大学生创新创业训练计划项目
关键词 建筑采暖 复合抛物面聚光器 空气流速 光热特性 building heating compound parabolic concentrator air flow rate optical-thermal performance
  • 相关文献

参考文献3

二级参考文献37

  • 1吴俊杰,侯宏娟,杨勇平.槽式太阳集热管热应力分析[J].工程热物理学报,2015,36(2):249-253. 被引量:5
  • 2郭苏,刘德有,许昌,王沛.DSG槽式太阳能集热器传热与水动力耦合稳态模型[J].动力工程学报,2014,34(7):556-563. 被引量:1
  • 3Fernandez-Garcia A, Zarza E, Valenzuela L, et al. Parabolic-trough solar collectors and their applications[J]. Renewable and Sustainable Energy Reviews, 2010, 14(7): 1695-1721.
  • 4Gong Guangjie, Huang Xinyan, Wang Jun, et al. An optimized model and test of the China\'s first high temperature parabolic trough solar receiver[J]. Solar Energy, 2010, 84(12): 2230-2245.
  • 5Zarza E, Rojas M E, González L, et al. INDITEP: The first pre-commercial DSG solar power plant[J]. Solar Energy, 2006, 80(10): 1270-1276.
  • 6Bennamoun L, Belhamri A. Design and simulation of a solar dryer for agriculture products[J]. Journal of Food Engineering, 2003, 59(2): 259-266.
  • 7Ekechukwu O V, Norton B. Review of solar-energy drying systems II: An overview of solar drying technology[J]. Energy Conversion and Management, 1999, 40(6): 615-655.
  • 8Mohamed A M I, El-Minshawy N A. Theoretical investigation of solar humidification-dehumidification desalination system using parabolic trough concentrators[J]. Energy Conversion and Management, 2011, 52(10): 3112-3119.
  • 9Abdel-Rehim Z S, Lasheen A. Experimental and theoretical study of a solar desalination system located in Cairo, Egypt[J]. Desalination, 2007, 217(1): 52-64.
  • 10Patnode Angela M. Simulation and Performance Evaluation of Parabolic Trough Solar Power Plants[D]. Sanford Aklein: University of Wisconsin-Madison, 2006.

共引文献44

同被引文献29

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部