期刊文献+

考虑分配次序的无人机协同目标分配建模与遗传算法求解 被引量:9

Modeling of unmanned aerial vehicles cooperative target assignment with allocation order and its solving of genetic algorithm
下载PDF
导出
摘要 本文研究了动态战场环境中的多无人机协同目标分配(MUCTA)问题,首先通过分析UAV分配次序对打击任务总收益的影响,设计了动态战场环境的更新规则,将航程代价和任务代价作为惩罚项修正目标函数,建立了考虑分配次序的UAVs协同目标分配优化模型.然后针对模型的物理意义改进了遗传算法基因编码方式,设计了MUCTA遗传算法,该算法利用状态转移思想,引进SDR算子获得多种分配次序种群,同时以单行变异算子修正UAV与目标对应关系,并采用最优个体法和轮盘赌法筛选子代个体.最后仿真结果验证了所设计算法的有效性. This article is concerned with the Multi-UA Vs cooperative target assignment (MUCT A) of dynamic battle eld environment. Firstly, By means of the in uence of unmanned aerial vehicle (UA V) allocation order on total revenue of strike task, the updating rules of dynamic battle eld environment are designed. The cost of ight path length and task is used as penalty term in objective function, and the optimization model of UA Vs cooperative target assignment with allocation order is established. Secondly, the coding method of genetic algorithm is improved based on the physical signi cance of the optimization model, and the MUCT A genetic algorithm is proposed. According to state transition, SDR operator is used to obtain different population of various allocation order, single mutation operator is used to adjust the correspondence relation between UA Vs and targets, the methods of optimal individual selection and roulette are used to screen offspring individuals. Finally, simulation results verify the effectiveness of the algorithm.
作者 陈志旺 夏顺 李建雄 王航 王昌蒙 CHEN Zhi-wang;XIA Shun;LI Jian-xiong;WANG Hang;WANG Chang-meng(Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University,Qinhuangdao Hebei 066004,China;National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,Yanshan University,Qinhuangdao Hebei 066004,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第7期1072-1082,共11页 Control Theory & Applications
基金 国家自然科学基金项目(61573305)资助~~
关键词 无人机 遗传算法 目标分配 分配模型 unmanned aerial vehicles genetic algorithms target assignment assignment model
  • 相关文献

参考文献8

二级参考文献39

  • 1廖沫,陈宗基.基于多Agent分布协同拍卖的动态目标分配算法[J].北京航空航天大学学报,2007,33(2):180-183. 被引量:28
  • 2龙涛,沈林成,朱华勇,牛轶峰.面向协同任务的多UCAV分布式任务分配与协调技术[J].自动化学报,2007,33(7):731-737. 被引量:33
  • 3Hastings,K J. Introduction to the Mathematics of Operations Research[M] ,New York ,M. Dekker, 1989.
  • 4Norman C,George P. Advanced Mine-to-Target Assignment Algorithms and Simulation [J]. AIAA-99-3993.
  • 5Harole E B. ACE:The Air Borne Combat Expert System an Exposition in Two Parts[R]. AD-AI70461.
  • 6Bertsekas D P. Auction algorithms for network flow problems:A tutorial introduction[J].Computational Optimization and Applications,1992,(01):7-66.
  • 7Michael M Zavlanos,Leonid Spesivtsev,George J Pappas. A distributed auction algorithm for the assignment problem[A].Cancun:IEEE,2008.1212-1217.
  • 8Choi Han-Lim,Brunet Luc,Jonathan P. Consensus-based decentralized auctions for robust task allocation[J].IEEE Transactions on Robotics,2009,(04):912-926.
  • 9Choi Han-Lim,Andrew K Whitten,Jonathan P How. Decentralized task allocation for heterogeneous teams with cooperation constraints[A].Baltimore:IEEE,2010.3057-3062.
  • 10Gregory A McIntyre,Kenneth J Hintz. An information theoretic approach to sensor scheduling[A].Bellingham:SPIE,1996.304-312.

共引文献164

同被引文献73

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部