期刊文献+

社交媒体计量指标与引文量的关系研究 被引量:5

Research on the Relationship between Social Media Metrics and Citation
原文传递
导出
摘要 [目的/意义]文章旨在探究众多社交媒体计量指标与传统引文量之间的深层次关系。对于新型学术评价指标的筛选、学者学术影响力的提升途径以及在线学术交流研究都具有重要意义。[方法/过程]利用实证分析的方法,首先对数据进行标准化,然后对16个社交媒体变量进行降维,提取6个公因子,最后对引文量与公因子之间进行多元逐步回归分析。[结果/结论]发现提取的6个社交媒体公因子中,对引文量产生显著影响的有学术因子、政策因子、同评因子3个公因子,且学术因子正向影响引文量,政策因子和同评因子负向影响引文量。新闻因子、微博因子和百科因子未产生显著影响。这一结果一方面在质疑将众多社交媒体计量指标引入学术评价;另一方面在肯定社交计量指标对学术评价多元化的影响。 [Purpose/significance]The paper aims to explore the relationship between social media metrics and traditional citations.For a meaningful understanding of scholarly communication,it is of practical significance for the indexes selection,influence promotion of social media metrics and academic exchange.[Method/process]In the first step,the data is standardized.In the second step,six common factors are extracted from 16 social media variables by dimension-reduction technique.A multivariate stepwise regression analysis was applied between the citation and factors.[Result/conclusion]Among the six common factors,significantly,academic factor positively affects citations,whereas policy factor and co-evaluation factor negatively affect citations.News factor,micro-blog factor,and encyclopedia factor do not have a significant impact.On the one hand,this result questions the rationality and validity of some social media altmetrics for academic evaluation,on the other hand,indicates some other potential diverse value academic evaluation.
作者 李佳培 贾楠 冯鑫 安海岗 Li Jiapei
出处 《情报理论与实践》 CSSCI 北大核心 2019年第7期138-143,共6页 Information Studies:Theory & Application
基金 河北省社会科学基金项目“面向地方服务的高校图书馆智库建设”的研究成果之一,项目编号:2018HBTQ014
关键词 社交媒体 计量指标 引文量 因子分析 social media metrics citations factor analysis
  • 相关文献

参考文献3

二级参考文献36

  • 1Buschman M, Michalek A. Are ahemative metrics still alternative? [J]. Bulletin of the American Society for Information Science and Technology, 2013, 39(4) : 35 -39.
  • 2MacRoberts M H, MacRoberts B R. Problems of citation analysis: A study of uncited and seldom-cited influences[ J]. Journal of the American Society for Information Science and Technology, 2010, 61(1): 1-12.
  • 3Yan K K, Gerstein M. The spread of scientific information : Insights from the Web usage statistics in PLoS article -level metrics [ J ]. PLoS One, 2011, 6(5) : e19917.
  • 4Uren V, Dadzie A S. Relative trends in scientific terms on Twitter [EB/OL1. [ 2014 - 09 - 08 ]. http://altmetrics, org/work- shop2011/uren - vo/.
  • 5Desai T, Shariff A, Shariff A, et al. Tweeting the meeting: An in -depth analysis of Twitter activity at Kidney Week 2011 [ J]. PLoS One, 2012, 7(7) : e40253.
  • 6William G, Jan R. Social metrics for research : Quantity and quality [EB/OL]. [ 2014 - 09 - 08]. http://ahmetrics, org/altmet- rics 12/gunn/.
  • 7Li Xuemei, Thelwall M. F1000, Mendeley and traditional biblio- metric indicators [ EB/OL]. [ 2014 - 09 - 08 ]. http ://2012. sti- conference, org/Proceedings/vol2/Li_FlO00_541, pdf.
  • 8Li Xuemei, Thelwall M, Giustini D. Validating online reference managers for scholarly impact measurement [ J 1. Seientometrics, 2012, 91(2) : 461 -471.
  • 9Bar-Ilan J, Haustein S, Peters I, et al. Beyond citations: Schol- ars' visibility on the social Web [ EB/OL]. [2014 -09 -08 ]. http ://arxiv. org/ftp/arxiv/papers/1205/1205. 5611. pdf.
  • 10Torres D, Cabezas A, Jim6nez E. Altmetrics: New indicators for scientific communication in Web 2.0 [ J]. Conmnicar, 2013, 21 (41) :53 -60.

共引文献117

同被引文献173

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部