期刊文献+

双缓冲通信网络中垃圾信息高效过滤仿真研究 被引量:2

Simulation Research on Efficient Filtering of Spam in Double Buffer Communication Network
下载PDF
导出
摘要 为了提高双缓冲通信网络运行的安全性和高效性,需要滤除双缓冲通信网络中存在的垃圾信息。采用当前信息过滤方法滤除双缓冲通信网络中存在的垃圾信息时,过滤所用的时间较长,且不能完全、准确地滤除垃圾信息,存在过滤效率低、召回率低和精确率低的问题。提出双缓冲通信网络中垃圾信息高效过滤方法,对双缓冲通信网络中存在的信息做降维处理,减少信息过滤所用的时间,在主成分分析法的基础上结合信息增益、互信息、X^2统计和TF-IDF方法提取降维处理后的信息特征,利用Boosting算法构建垃圾信息过滤器,将提取得到的信息特征输入垃圾信息过滤器中,滤除双缓冲通信网络中存在的垃圾信息,实现双缓冲通信网络中垃圾信息的高效过滤。仿真实验结果表明,所提方法的过滤效率高、召回率高、精确率高。 In order to improve security and efficiency of the double buffer communication network, it is necessary to filter out the spam in double buffer communication network. But the current information filtering method cannot completely and accurately filter out spam, leading to low filtering efficiency and recall rate. Therefore, an efficient method for filtering spam in double buffer communication network was proposed. At first, the time used by information filtering could be reduced through the dimension reduction for information in double buffer communication network. Based on the principal component analysis method, the information gain, mutual information, x^2 statistics and TF-IDF method were combined to extract the information features after the dimension reduction. After that, the boosting algorithm was used to construct the spam filter. The extracted information features were input into the spam filter, so as to filter out the spam in double buffer communication network. Finally, the efficient filtering for spam in double buffer communication network was achieved. Simulation results show that the proposed method has high filtering efficiency ,high recall rate and high precision.
作者 周显春 ZHOU Xian-chun(School of Information and Intelligence Engineering,Sanya University,Hainan Sanya 572022,China)
出处 《计算机仿真》 北大核心 2019年第7期157-160,256,共5页 Computer Simulation
基金 海南省自然科学基金资助项目(618MS082)
关键词 双缓冲通信网络 垃圾信息 过滤方法 Double buffer communication network Spam Filter method
  • 相关文献

参考文献9

二级参考文献100

共引文献99

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部