摘要
首先,利用基于边界域粗糙近似算子,给出 n 阶边界集的定义,引入 n 阶粗糙近似算子的定义,构造粗糙集理论的一套阶梯式近似方法.然后,通过实例和相关证明表明,无论二元关系还是在覆盖环境中,总存在正整数 n ,对于任意对象集, n 阶上下近似集完全等于该对象集,即该对象集是此意义下的精确集,或其 n 阶上下近似集趋近于某一固定的对象集,即 n 阶粗糙集总能使对象集合趋近于它本身或某一固定的集合.
The definition of n -step boundary set is given based on rough approximation operator in boundary region. The definition of n -step rough approximation operator is introduced and a set of stepped approximation method of rough set theory is constructed. The examples and related proofs show that positive integers always exist in both binary relations and coverage environments, the n -step upper and lower approximation sets are exactly equal to the set of objects, and the object set is the exact set in this sense. Its n -step upper and lower approximation sets or approach a fixed set of objects. The n -step rough set can make an object set approach itself or a fixed set.
作者
马周明
张海洋
陈锦坤
李进金
MA Zhouming;ZHANG Haiyang;CHEN Jinkun;LI Jinjin(School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000;Institute of Meteorological Big-Digital Fujian, Minnan Normal University, ZhangZhou 363000)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2019年第7期600-606,共7页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.A011404,61573127,61672272,61603173,11701258)
福建省自然科学基金项目(No.2017J01507,2019J01748)资助~~
关键词
N
阶粗糙集
精确集
近似算子
边界域
阶梯式近似方法
n -Step Rough Set
Exact Set
Approximation Operator
Boundary Region
Stepped Approximation Method