期刊文献+

弹性核k-NN分类算法及其在药物构效关系中的应用 被引量:1

Elastic Kernel k-Nearest Neighbor Classifier and Its Application in Drug Structure-Activity Relationship
下载PDF
导出
摘要 核方法利用核函数可以有效地解决非线性问题,在药物构效关系领域得到了广泛的应用﹒本文提出了一种新的弹性核k-最近邻算法(EKk-NN)﹒首先,基于加权多项式核和径向基函数核构造了一种信息丰富的弹性核,所构造的弹性核能有效地利用局部核和全局核的优点,同时也为构造核函数提供了一种可行的方法;然后,在核方法的框架下,将弹性核耦合到k-最近邻算法﹒实际数据集的实验和分析表明,EKk-NN能明显提高分类性能﹒ The kernel approaches have been gaining popularity in the field of drug Structure-Activity Relationship,which could effectively solve nonlinear problems by using the kernel function.In the present study,a novel Elastic Kernel k-Nearest Neighbor algorithm (EKk-NN) has been proposed.First,an informative novel elastic kernel is constructed based on polynomial kernel and radial basis function kernel. The constructed elastic kernel can effectively integrate the advantages of local kernel and global kernel,which can provide a feasible way for building the kernel function.Then,under the framework of kernel methods, this elastic kernel is extended to the k-Nearest Neighbor algorithm.Compared with the traditional kernel k-NN, experiments and analysis on the real data sets have shown that EKk-NN can significantly improve the performance of classification,which is really an attractive alternative technique.
作者 黄新 罗逸平 王梦贤 周密 HUANG Xin;LUO Yiping;WANG Mengxian;ZHOU Mi(Management School,Hunan City University,Yiyang,Hunan 413000,China)
出处 《湖南城市学院学报(自然科学版)》 CAS 2019年第4期47-51,共5页 Journal of Hunan City University:Natural Science
基金 湖南省哲学社会科学基金项目(18YBA065)
关键词 核方法 K-最近邻 构效关系 弹性核 kernel methods k-Nearest Neighbor (k-NN) Structure-Activity Relationship (SAR) elastic kernel
  • 相关文献

参考文献1

二级参考文献21

  • 1周晓飞,杨静宇,姜文瀚.核最近邻凸包分类算法[J].中国图象图形学报,2007,12(7):1209-1213. 被引量:6
  • 2Yu K, Ji L, Zhang X G. Kernel nearest-neighbor algorithm. Neural Processing Letters, 2002, 15(2): 147-156.
  • 3Amari Shun-ichi, Nagaoka H. Methods of Information Geometry (Translations of Mathematical Monographs). New Orleans: American Mathematical Society, 2000.
  • 4Torkkola K. Feature extraction by non-parametric mutual information maximization. The Journal of Machine Learning Research, 2003, 3:1415-1438.
  • 5Zhang Y, Zhou Z H. Non-metric label propagation. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence. Pasadena, USA: Morgan Kaufmann Publishers, 2009. 1357-1362.
  • 6Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines. The Journal of Machine Learning Research, 2002, 2:265-292.
  • 7UCI machine learning repository [Online], available: http://archive.ics.uci.edu/ml/, March 10, 2009.
  • 8Face data [Online], available: http://www.uk.research.att. com/facedatabase.html, March 10, 2009.
  • 9LeCun Y, Cortes C. Mnist data [Online], available: http://yann.lecun.com/exdb/mnist/, March 10, 2009.
  • 10Newsgroups data [Online], available: http://people.csail. mit.edu/jrennie/20Newsgroups, March 10, 2009.

共引文献14

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部