期刊文献+

基于时空信息特征融合的视频指纹算法 被引量:2

Video Fingerprinting Algorithm Based on Temporal and Spatial Information Feature Fusion
下载PDF
导出
摘要 为满足视频拷贝检测系统的鲁棒性、独特性和紧凑性,提出一种包含时空信息特征的视频指纹算法。利用时空切片和关键帧构成时空信息,将包含视频关键帧空域信息的Gabor特征和时空切片时域信息的直方图特征加权融合,量化后得到视频指纹。在公开数据库上进行对比实验,结果表明,与结构图模型、时间信息表示图像、梯度方向质心等算法相比,该算法ROC性能突出,鲁棒性得到明显提高,整体性能更优。 To meet the robustness,uniqueness and compactness requirements of video copy detection systems,a video fingerprint algorithm including temporal and spatial information is proposed.The temporal and spatial information is composed of spatio-temporal slices and keyframes.Weighted fusion is implemented on Gabor features including the spatial information of video key frames,and on histogram features including temporal information of spatio-temporal slices.The fusion is quantized to generate the video fingerprint.Comparative experiments are carried out on the public database,and results show that the proposed algorithm has an outstanding ROC performance,obviously higher robustness,and better overall performance compared with structure diagram model,temporal information image,gradient direction centroid and other algorithms.
作者 单礼岩 李新伟 SHAN Liyan;LI Xinwei(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo,Henan 454000,China;Open Laboratory of Control Engineering based on Henan Provincial Key Disciplines in Universities,Jiaozuo,Henan 454000, China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第8期260-265,274,共7页 Computer Engineering
基金 国家自然科学基金(61402152,61403130) 河南省高等学校控制工程重点学科开放实验室课题(KG2014-06) 河南理工大学博士基金(B2013-022)
关键词 视频指纹 时空切片 关键帧 特征融合 GABOR变换 鲁棒性 video fingerprint spatio-temporal slice key frame feature fusion Gabor transform robustness
  • 相关文献

参考文献5

二级参考文献45

  • 1Paul O. Guideline for TRCVID 2010[EB/OL].(2011-04-26)[2011-12-01]. http://www-nlpir.nist.gov/projects/tv2010 /tv2010. html#ccd.
  • 2Tang F,Crabb R, Tao H. Representing images using nonorthogonal haar-like bases[J]. Pattern Anal. Mach. Intell, 2007, 29(12): 2120-2134.[DOI:10.1109/TPAMI.2007.1123].
  • 3Zhao W L, Ngo C W. Scale-rotation invariant pattern entropy for keypoint-based near-duplicate detection[J]. IEEE Trans. on Image Processing, 2009, 18(2):412-423. [DOI:10.1109/TIP.2008.2008900].
  • 4Hua X, Chen X, Zhang H. Robust video signature based on ordinal measure[C]//Proceedings of International Conference on Image Processing. Beijing, China: Microsoft Res., 2004:685-688. [DOI:10.1109/ICIP.2004. 141884 7].
  • 5Usman M, Kim C. Real time video copy detection under the environments of video degradation and editing[C]//Proceedings of the 10th International Conference on Advanced Communication Technology. Daejeon:Inf. & Commun. Univ., 2008: 1583-1588.[DOI:10.1109/IC ACT.2008. 4494083].
  • 6Paisitkriangkrai S, Mei T, Zhang J. Scalable clip-based near-duplicate video detection with ordinal measure[C]//Proceedings of the ACM International Conference on Image and Video Retrie-val.New York, USA: ACM, 2010: 121-128. [DOI:10.1145/1816041.1816062].
  • 7Law-To J, Chen L, Laptev I. Video copy detection: a comparative study[C]//Proceedings of the 6th ACM International Conference on Image and Video Retrieval. New York, USA: ACM, 2007:371-378.[DOI:10. 1145/ 1282280.1282336].
  • 8Jégou H, Douze M, Schmid C. Hamming embedding and weak geometric consistency for large scale image search[J]. Lecture Notes in Computer Science, 2008, 5302:304-317. [DOI:10.1007/978-3-540-88682-2_24].
  • 9Nistér D, Stewénius H. Scalable recognition with a vocabulary tree[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Lexington,USA:University of Kentucky. 2006(2): 2161-2168. [DOI:10.1109/CVPR.2006.264].
  • 10Philbin J, Chum O, Isard M. Object retrieval with large vocabularies and fast spatial matching[C]//Computer Vision and Pattern Recognition. Oxford:University of Oxford, 2007:1-8. [DOI: 10.1109/CVPR.2007.383172].

共引文献32

同被引文献9

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部