期刊文献+

基于邻域优化机制的图像显著性目标检测 被引量:1

Salient object detection based on neighborhood optimization mechanism
下载PDF
导出
摘要 在显著性目标检测中,背景区域和前景区域区分度不高会导致检测结果不理想。针对这一问题,提出一种基于邻域优化机制的图像显著性目标检测算法。首先对图像进行超像素分割;然后在CIELab颜色空间建立对比图和分布图,并通过一种新的合并方式进行融合;最后在空间距离等约束下,建立邻域更新机制,对初始显著性图进行优化。实验对比表明,该算法显著性目标检测效果更好。 In the salient object detection,the detection results are not ideal when the difference between the background region and the foreground region is not obvious.To address this problem,we propose a saliency object detection algorithm based on neighborhood optimization mechanism.Firstly,the image is segmented by super-pixels.Then,the contrast map and distribution map are established in the CIELab color space and they are merged by a new merging method.Finally,under the constraints such as spatial distance,a neighborhood updating mechanism is established to optimize the initial salient maps.Experimental results show that the algorithm is more effective in salient object detection.
作者 魏伟一 王瑜 窦镭响 文雅宏 WEI Wei-yi;WANG Yu;DOU Lei-xiang;WEN Ya-hong(College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
出处 《计算机工程与科学》 CSCD 北大核心 2019年第8期1459-1465,共7页 Computer Engineering & Science
基金 国家自然科学基金(61861040) 甘肃省科技计划资助项目(17YF1FA119
关键词 显著性目标 邻域优化 超像素 salient object neighborhood optimization super-pixels
  • 相关文献

参考文献3

二级参考文献48

  • 1Triesman A M, Gelade G. A feature-integration theory of atten- tion[J]. Cognitive Psychology, 1980, 12( 1 ) : 97-136. [DOI: 10. 1016/0010-0285(80)90005-5].
  • 2Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry [ J ]. Human Neurobiology, 1985, 4(4) : 219-227. [DOI: 10. 1007/078-94-009-3833-5_5].
  • 3Chen T, Cheng M M, Tan P, et al. Sketch2Photo: internet im- age montage [ J ]. ACM Transactions on Graphics, 2009, 28 (5) : 124:1-124:10. [DOI: 10. 1145/1661412. 1618470].
  • 4Wang Y S, Tai C L, Sorkine O, et al. Optimized scale-and- stretch for image resizing [ J ]. ACM Transactions on Graphics, 2008, 27 (5) : #118. [DOI : 10.1145/1409060. 1409071 ].
  • 5Zhang G X, Cheng M M, Hu S M, et al. A shape-preserving ap- proach to image resizing [ J ]. Computer Graphics Forum, 2009, 28 (7) : 1897-1906. [DOI: 10. llll/j. 1467-8659. 2009. 01568. x].
  • 6Wu H S, Wang Y S, Feng K C, et al. Resizing by symmetry- summarization [ J ]. ACM Transactions on Graphics, 2010, 29(6) : #159. [DOI: 10. 1145/1882261. 1866185].
  • 7Rutishauser U, Wahher D, Koch C, et al. Is bottom-up attention useful for object recognition? [ C ]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE Computer Society Press, 2004, 2: 37-44. [ DOI: 10. ll09/CVPR. 2004. 1315142].
  • 8Hahn J W, Ngan K N, Li M, et al. Unsupervised extraction of visual attention objects in color images[ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2006, 16( 1 ) : 141- 145. [ DOI : 10.1109/TCSVT. 2005. 859028 ].
  • 9Ko B C, Nam J Y. Objeet-of-interest image segmentation based on human attention and semantic region clustering[ J]. Journal of the Optieal Society of Ameriea A, 2006, 23 ( 10 ) : 2462-2470. [ DOI: 10. 1364/JOSAA. 23. 002462].
  • 10Desimone R, Duncan J. Neural mechanisms of selective visual attention [J]. Annual Review of Neurescience, 1995, 18 ( 1 ) : 193-222. [ DOI : 10.1146/annurev. ne. 18. 030195. 0012051.

共引文献29

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部