摘要
The low-activity cationic monomer tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane was synthesized by Grignard reaction and hydroxyl-protection reaction. Living polyisobutylene chains were initially synthesized by controlled cationic polymerization and then capped with tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane. The hydrolysis of these polyisobutylenes end capped with tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane gave rise to hydroxytelechelic polyisobutylene. NMR analysis confirmed that the hydrolysis was complete. Results also showed that a low polymerization temperature favored the participation of tert-butyl-dimethyl-(4- methyl-pent-4?enyloxy)-silane in the end-capping reaction. Moreover, polyisobutylene-based polyurethane exhibited greater acid resistance than commercial polyurethane.
The low-activity cationic monomer tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane was synthesized by Grignard reaction and hydroxyl-protection reaction. Living polyisobutylene chains were initially synthesized by controlled cationic polymerization and then capped with tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane. The hydrolysis of these polyisobutylenes end capped with tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane gave rise to hydroxytelechelic polyisobutylene. NMR analysis confirmed that the hydrolysis was complete. Results also showed that a low polymerization temperature favored the participation of tert-butyl-dimethyl-(4-methyl-pent-4-enyloxy)-silane in the end-capping reaction. Moreover, polyisobutylene-based polyurethane exhibited greater acid resistance than commercial polyurethane.
基金
financially supported by the National Natural Science Foundation of China (No. 51573020)
Beijing Natural Science Foundation (No. 2172022)
Scientific Research Project of Beijing Educational Committee (No. KM201810017008)
Project of Petrochina (No. kywx-18-002)
URT program (No. 2018J00074)