摘要
全球导航卫星系统(GNSS)共视(CV)技术应用中需要对GNSS共视信号进行模拟仿真,可以降低对共视接收机和共视算法进行测试过程中的成本。为此,提出了一种基于信道复用方法的GNSS共视信号的双路信号模拟方法。首先,对GNSS共视技术原理进行了分析。然后,根据GNSS直射信号的模拟思路,设计了基于GNSS直射信号模拟器的GNSS共视信号模拟方法,对共视信号传播过程中可能产生的误差进行了分析。最后,对零基线、短基线、长基线3种场景下仿真的共视信号,以及实场采集的试验数据进行了验证分析。验证的结果表明,仿真的GNSS共视信号定位准确,定位精度在米级;共视比对结果均方根值(RMS)精度优于12 ns,可以进行共视法时间传递,证明了提出的共视信号模拟方法能够有效地用于GNSS共视信号生成。对GNSS共视信号模拟器、共视接收机的研制和共视算法的研究具有一定的理论参考意义和实际应用价值。
In the application of global navigation satellite system (GNSS) common view (CV) technology, the simulation of the GNSS CV signal is needed to reduce the cost of testing the CV receiver and the CV algorithm. For this reason, a channel multiplexing method of signal simulation of GNSS CV signal is proposed. First, the principle of GNSS CV technology is analyzed. The GNSS CV signal simulation method based on GNSS direct signal simulator was designed, and the possible errors in the process of CV signal transmission were analyzed. Finally, the CV signal of the simulation under zero base line, short base line and long base line, as well as the experimental data collected by an experiment were verified and analyzed. The result of verification shows that the simulated GNSS CV signal is located accurately and the positioning accuracy is in meter level. The result of CV comparison shows that the accuracy of root mean square (RMS) is better than 12 ns. The time transfer of CV method can be carried out, which proves that the proposed CV signal simulation method can be effectively used to generate GNSS CV signal. It has certain theoretical reference significance and practical application value for the development of GNSS CV signal simulator and CV receiver and for the study of CV algorithm.
作者
李博闻
蔚保国
张波
韩华
宋伟
吴迪
LI Bowen;YU Baoguo;ZHANG Bo;HAN Hua;SONG Wei;WU Di(State Key Laboratory of Satellite Navigation System and Equipment Technology, Shijiazhuang 050000, China;School of Electronics and Information Engineering, Beihang University, Beijing 100083, China)
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2019年第7期1406-1414,共9页
Journal of Beijing University of Aeronautics and Astronautics
基金
新技术研究高校合作项目(KX162600040)~~