期刊文献+

二维相关光谱在大米中甲基毒死蜱特征变量优选的应用 被引量:4

Application of Two-dimensional Correlation Spectroscopy in Optimization of Characteristic Variables for Chlorpyrifos-methyl in Rice
下载PDF
导出
摘要 为提高大米中农药残留的表面增强拉曼光谱(SERS)快速检测精度,提出采用二维相关光谱(2DCOS)对大米拉曼光谱进行农药特征变量优选。首先,采用标准正态变量变换(SNV)对原始光谱预处理,再以甲基毒死蜱浓度为外扰,进行二维相关同步光谱和自相关谱解析,筛选出与甲基毒死蜱浓度变化最相关的特征谱峰,建立了大米中甲基毒死蜱残留浓度的支持向量机(SVM)分析模型,并与偏最小二乘(PLS)模型进行性能比较。结果表明,2DCOS方法能很好地筛选出与甲基毒死蜱浓度相关的特征谱峰;利用2DCOS优选出的4个甲基毒死蜱特征谱峰所建立的SVM模型性能优于PLS的实验结果,模型对预测集样本相关系数(RP)为0.96,均方根误差(RMSEP)为5.21,相对分析误差(RPD)为3.66,可用于大米中甲基毒死蜱农药残留的实际估测。研究表明,采用2DCOS优选大米中甲基毒死蜱浓度相关的特征变量是可行的,且能简化模型,提高模型预测精度,从而为拉曼光谱用于食品农产品质量安全的快速检测提供了一种新思路。 A two-dimensional correlation spectroscopy (2DCOS ) was presented to optimize the characteristic variables for pesticide residues in rice,in order to improve the accuracy for the rapid detection of pesticide residues in rice based on surface-enhanced Raman spectroscopy (SERS ).Firstly,the original spectra were pretreated using standard normal variable transformation (SNV ),then the two-dimensional correlation spectrum and diagnosis spectrum were analyzed with chlorpyrifos-methyl concentration as the disturbance.The characteristic peaks of chlorpyrifos-methyl were optimized based on the two-dimensional correlation spectroscopy and diagnosis spectroscopy.A support vector machine (SVM ) model for analyzing chlorpyrifos-methyl residues in rice was developed,and was compared with the PLS model.Results showed that2DCOS was a wonderful way for screening out the characteristic peaks related to the chlorpyrifos-methyl.The performance of SVM model based on 4 chlorpyrifos-methyl characteristic peaks selected by2DCOS was better than that of the PLS model.The correlation coefficient ( R p ) in the prediction set was 0.96,the root mean square error of prediction ( RMSEP ) was 5.21,and the relative prediction deviation ( RPD ) was3.66,which indicated that the developed model could be used for the actual estimation of chlorpyrifos-methyl pesticide residues in rice.Results showed that2DCOS is feasible for screening characteristic peaks related to chlorpyrifos-methyl in rice by simplifying the model and improve the prediction accuracy.It provides a new idea for the rapid detection of food and agricultural products by Raman spectroscopy for quality and safety.
作者 胡潇 黄俊仕 朱晓宇 刘鹏 吴瑞梅 邱霞 艾施荣 HU Xiao;HUANG Jun-shi;ZHU Xiao-yu;LIU Peng;WU Rui-mei;QIU Xia;AI Shi-rong(College of Computer and Information Engineering,Jiangxi Agricultural University,Nanchang 330045,China;College of Engineering,Jiangxi Agricultural University,Nanchang 330045,China;College of Food Science and Engineering,Jiangxi Agricultural University,Nanchang 330045,China)
出处 《分析测试学报》 CAS CSCD 北大核心 2019年第8期946-952,共7页 Journal of Instrumental Analysis
基金 国家自然科学基金资助项目(31460315) 江西省对外科技合作计划(20151BDH80065)
关键词 表面增强拉曼光谱(SERS) 二维相关光谱(2DCOS) 特征变量优选 快速检测 大米 甲基毒死蜱 surface-enhanced Raman spectroscopy (SERS ) two-dimensional correlation spectroscopy (2DCOS ) characteristic variable optimization rapid detection rice chlorpyrifos-methyl
  • 相关文献

参考文献8

二级参考文献58

  • 1H.Zhang1,2, S.Li3, X.H.Wang 4, Q.Li1,2, S.H.Wei3, L.Y.Gao4, W.P.Zhao1,2, Z.G.Hu1, R.S.Mao1, H.S.Xu1, H.Y.Cai 4, Y.Y.Yue3, G.Q.Xiao1 1Institute of Modern Physics, CAS, Lanzhou 730000, China 2 Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China 3 The General Hospital of Lanzhou Command, Lanzhou 730050, China 4 Tumor Hospital of Gansu Province, Lanzhou 730050, China.Results of Carbon Ion Radiotherapy for Skin Carcinomas in 33 Patients[J].生物物理学报,2009,25(S1):415-416. 被引量:45
  • 2邹小波,朱曾,赵杰文.基于间隔偏最小二乘法的农产品近红外光谱谱区选择方法[J].现代科学仪器,2007,24(1):86-88. 被引量:22
  • 3叶江雷,弓振斌,林芳,金贵娥,温裕云.茶叶中水胺硫磷、亚胺硫磷、甲基对硫磷和伏杀硫磷农药残留的高效液相色谱法测定[J].厦门大学学报(自然科学版),2007,46(3):441-444. 被引量:22
  • 4牛智有,韩鲁佳.鱼粉中氨基酸近红外光谱定量分析[J].农业机械学报,2007,38(5):114-117. 被引量:29
  • 5GB/T8313-2008,茶叶中茶多酚和儿茶素类含量的检测方法[s],2008:3-5.
  • 6Leornardo S M, Flavia C C, Paulo A Z, et al. Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT- Raman spectrometries[ J]. Analytica Chimica Acta, 2003, 493(2) :219 -231.
  • 7Yu H Y, Ying Y B, Fu X P, et al. Quality determination of Chinese rice wine based on Fourier transform near infrared spectroscopy[ J]. Journal of Near Infrared Spectroscopy, 2006, 14( 1 ) :37 -44.
  • 8Cozzolino D, Smyth H E, Gishen M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins[ J]. Journal of Agricultural and Food Chemistry, 2003, 51 (26) :7 703 - 7 708.
  • 9Malley D F, Ronicke H, Findlay D L, et al. Feasibility of using near-infrared reflectance spectroscopy for the analysis of C, N, P and diatoms in lake sediments[ J]. Journal of Paleolimnology, 1999, 21 (3) :295 - 306.
  • 10Williams P C, Sobering D C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds [ J]. Journal of Near Infrared Spectroscopy, 1993, 1 ( 1 ) :25 - 32.

共引文献91

同被引文献28

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部