期刊文献+

改进的随机森林分类器网络入侵检测方法 被引量:42

Improved random forest classifier network intrusion detection method
下载PDF
导出
摘要 目前网络入侵检测方法大多基于改进的机器学习算法,但是机器学习算法会出现过拟合情况,导致入侵检测准确率降低。为解决该问题,提出一种改进的随机森林分类器网络入侵检测方法,通过高斯混合模型聚类算法将数据分成不同的簇,为每一个簇训练不同的随机森林分类器,通过这些训练好的随机森林分类器进行网络入侵检测。训练和实验数据采用NSL-KDD网络入侵数据集,实施中首先根据属性比率数据特征提取方法进行数据处理,然后进行高斯混合聚类,最后使用随机森林分类器对聚类结果进行训练。实验结果表明,该方法相比其它机器学习算法具有更高的入侵检测准确率。 At present,network intrusion detection methods are mostly based on improved machine learning algorithms,but neural network algorithms sometimes have an over-fitting situation,which may lead to low accuracy of intrusion detection.To solve this problem,an improved random forest classifier network intrusion detection method was proposed.Dividing data into different clusters using Gaussian mixture model clustering algorithm and different random forest classifiers were trained for each cluster.The network intrusion detection was performed through these trained random forest classifiers.NSL-KDD network intrusion dataset was used as experimental simulation.Data processing was performed based on feature selection using attribute ratio,then Gaussian mixture clustering was performed,and finally the clustering results were trained using a random forest classifier.Experimental results show that the proposed method has higher intrusion detection accuracy compared with the other machine lear- ning algorithms.
作者 夏景明 李冲 谈玲 周刚 XIA Jing-ming;LI Chong;TAN Ling;ZHOU Gang(School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Computer and Software,Nanjing Universityof Information Science and Technology,Nanjing 210044,China)
出处 《计算机工程与设计》 北大核心 2019年第8期2146-2150,共5页 Computer Engineering and Design
关键词 网络安全入侵检测 机器学习 随机森林分类器 高斯混合聚类 属性比特征提取 网络入侵检测数据集 network security intrusion detection machine learning random forest classifier Gaussian hybrid clustering attri- bute ratio feature extraction NSL-KDD
  • 相关文献

参考文献10

二级参考文献95

共引文献296

同被引文献345

引证文献42

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部