期刊文献+

轮式机器人的末端位姿测量与误差补偿控制

End position and attitude measurement and error compensation control of wheeled robot
下载PDF
导出
摘要 为了提高轮式机器人控制的稳定性,提出基于稳态跟踪识别的轮式机器人的末端位姿测量与误差补偿控制方法,构建轮式机器人弹性连杆机构的动力学模型,在给定的加速度约束下进行轮式机器人弹性连杆机构的参数辨识,在机器人的运动平面内采用标准卡尔曼滤波模型进行运动姿态参数融合处理,根据轮式机器人的末端位姿进行参数自适应调节,采用比例-微分控制模型进行机器人的末端位姿测量与误差补偿控制,采用多步迭代方法实现轮式机器人的轨迹跟踪和位姿测量,提高机器人的位姿精度.仿真结果表明,采用该方法进行轮式机器人的末端位姿测量的准确性较高,误差补偿控制能力较好,具有较好的稳健性和鲁棒性. In order to improve the stability of wheel robot control,a method of end position and attitude measurement and error compensation control of wheeled robot based on steady-state tracking and recognition is proposed,and the dynamic model of elastic linkage mechanism of wheeled robot is constructed.The parameter identification of the elastic linkage mechanism of wheeled robot is carried out under the given acceleration constraint.In the motion plane of the robot,the standard Kalman filter model is used to process the fusion of the motion and attitude parameters.The parameters of the wheeled robot are adjusted adaptively according to the end position of the robot.The proportional-differential control model is used to measure the end position and control the error compensation of the robot.The trajectory tracking and pose measurement of wheeled robot are realized by using multi-step iterative method,and the accuracy of robot's position and pose is improved.The simulation results show that this method has higher accuracy,better error compensation control ability and better robustness in the measurement of the end position and pose of wheeled robot.
作者 陈晓生 CHEN Xiaosheng(Huali College,Guangdong University of Technology,Guangzhou 511325,China)
出处 《智能计算机与应用》 2019年第4期274-277,共4页 Intelligent Computer and Applications
关键词 轮式机器人 末端位姿测量 误差补偿 控制 wheeled robot end position and pose measurement error compensation control
  • 相关文献

参考文献8

二级参考文献72

  • 1Yoo C S, Ahn I K. Low cost GPS/INS sensor fusion system for UAV navigation[C]//Proceedings of the 22nd Digital Avionic-s Systems Conference: vol.2. Piscataway, USA: IEEE, 2003: 8.A.1-1-9.
  • 2Farhad A, Marcin K, Galina O. Fault-tolerant position/attitude estimation of free-floating space objects using a laser range sen- sor[J]. IEEE Sensors Journal, 2011, 11(1): 176-185.
  • 3Zhao H, Wang Z Y. Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion[J]. IEEE Sensors Journal, 2012, 12(5): 943- 953.
  • 4Klose S, Wang J, Achtelik M. Markerless, vision-assisted flight control of a quadrocopter[C]//IEEE/RSJ International Confer- ence on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2010: 5712-5715.
  • 5Grzonka S, Grisetti G, Burgard W. A fully autonomous indoor quadrotor[J]. IEEE Transactions on Robotics, 2012, 28(1): 90- 100.
  • 6Meier L, Tanskanen P, Heng L. PIXHAWK: A micro aerial ve- hicle design for autonomous flight using onboard computer vi- sion[J]. Autonomous Robots, 2012, 33(1/2): 21-39.
  • 7Artieda J, Sebastian J, Campoy E Visual 3-D SLAM from UAVs[J]. Journal of Intelligent and Robotic Systems, 2009, 55(4/5): 299-321.
  • 8de Marina H G, Pereda F J, Giron-Sierra J M, et al. UAV attitude estimation using unscented Kalman filter and TRIAD[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4465- 4474.
  • 9Mondragon I F, Olivares-Mendez M A, Campoy P, et al. Un- manned aerial vehicles UAVs attitude, height, motion estima- tion and control using visual systems[J]. Autonomous Robots, 2010, 29(1): 17-34.
  • 10Zhou F, Zheng W, Wang Z E Adaptive noise identification in vision-assisted motion estimation for unmanned aerial ve- hicles[J]. International Journal of Automation and Computing, 2008, DOI: 10.3724/SP.J.1005.2008.00225.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部