期刊文献+

Fast acclimation of phytoplankton assemblies to acute salinity stress in the Jiulong River Estuary

Fast acclimation of phytoplankton assemblies to acute salinity stress in the Jiulong River Estuary
下载PDF
导出
摘要 Mixing of freshwater and seawater creates the well-known salinity gradients along the estuaries. In order to investigate how phytoplankton respond to the acute salinity changes, we exposed natural phytoplankton assemblies from the Jiulong River Estuary to differential saline field water while continuously monitoring their photosynthetic performances under both indoor-and outdoor-growth conditions. When the natural cell assemblies from salinity 30 field water were exposed to series low saline field water(salinity 25, 17, 13 and 7.5), the effective Photosystem II quantum yield(ΔF/Fm′) decreased sharply, e.g., to one-fifth of its initials after 5 min exposure to salinity 7.5 field water, and then increased fast during the following 40 min and almost completely recovered after 320 min. During such an exposure process, non-photochemical quenching(NPQ) sharply increased from 0 to 0.85 within 5 min, and then decreased to nearly 0 within the following 70 min. When these cells re-acclimated to salinity 7.5 field water were exposed to series high saline field water(salinity 13, 17, 25 and 30), a similar response pattern was observed, with the decreased ΔF/Fm′ accompanied with increased NPQ, and followed by the recovery-induced increase in ΔF/Fm′ and decrease in NPQ. A similar response pattern as ΔF/Fm′to the acute osmotic stress was also observed in the photosynthetic carbon fixation capacity according to radiocarbon(14C) incorporation. Our results indicate that estuarine phytoplankton assemblies could rapidly recover from the acute osmotic stress, implying a potential cause for their frequent blooms in coastal-estuarine waters where despite drastically varying salinity, available nutrients are abundant due to the land-derived runoffs or mixing-caused relaxations from sediments. Mixing of freshwater and seawater creates the well-known salinity gradients along the estuaries. In order to investigate how phytoplankton respond to the acute salinity changes, we exposed natural phytoplankton assemblies from the Jiulong River Estuary to differential saline field water while continuously monitoring their photosynthetic performances under both indoor-and outdoor-growth conditions. When the natural cell assemblies from salinity 30 field water were exposed to series low saline field water(salinity 25, 17, 13 and 7.5), the effective Photosystem II quantum yield(ΔF/Fm′) decreased sharply, e.g., to one-fifth of its initials after 5 min exposure to salinity 7.5 field water, and then increased fast during the following 40 min and almost completely recovered after 320 min. During such an exposure process, non-photochemical quenching(NPQ) sharply increased from 0 to 0.85 within 5 min, and then decreased to nearly 0 within the following 70 min. When these cells re-acclimated to salinity 7.5 field water were exposed to series high saline field water(salinity 13, 17, 25 and 30), a similar response pattern was observed, with the decreased ΔF/Fm′ accompanied with increased NPQ, and followed by the recovery-induced increase in ΔF/Fm′ and decrease in NPQ. A similar response pattern as ΔF/Fm′to the acute osmotic stress was also observed in the photosynthetic carbon fixation capacity according to radiocarbon(14C) incorporation. Our results indicate that estuarine phytoplankton assemblies could rapidly recover from the acute osmotic stress, implying a potential cause for their frequent blooms in coastal-estuarine waters where despite drastically varying salinity, available nutrients are abundant due to the land-derived runoffs or mixing-caused relaxations from sediments.
作者 Gang Li
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第8期78-85,共8页 海洋学报(英文版)
基金 The National Natural Science Foundation of China under contract Nos 41890853 and 41676156 the National Basic Research Program of China(973 Program)under contract No.2015CB452903 the Strategic Priority Research Program of Chinese Academy of Sciences under contract Nos XDA13020103 and XDA11020305 the Natural Science Foundation of Guangdong Province under contract Nos 2015A030313826 and 2017A030313216 the Special Fund for Agro-scientific Research in the Public Interest under contract No.201403008 the Science and Technology Planning Project of Guangdong Province under contract No.2017B030314052
关键词 PSII quantum yield carbon FIXATION salinity gradients PHYTOPLANKTON ASSEMBLIES Jiulong River ESTUARY PSII quantum yield carbon fixation salinity gradients phytoplankton assemblies Jiulong River Estuary
  • 相关文献

参考文献9

二级参考文献109

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部