期刊文献+

固液混合过程的数值模拟及实验研究 被引量:5

Numerical Simulation and Experimental Study of Solid-Liquid Mixing Process
下载PDF
导出
摘要 基于计算流体动力学(CFD)方法,对搅拌槽中的固液混合过程进行数值模拟,研究不同转速下固液相的分布规律,并得到固体颗粒完全离底悬浮的临界转速.结果表明,对于平直叶涡轮式搅拌器,当安装高度为100 mm时,随着涡轮式搅拌器转速的逐渐增大,槽底的中心沉积区逐渐减小,固体颗粒在300 r/min的转速下达到完全离底悬浮;对于斜叶涡轮式搅拌器,固体颗粒在250 r/min的转速下达到完全离底悬浮.通过与实验结果比较,可以认为CFD方法能够较好地还原搅拌过程.此外,通过改变搅拌器叶片的角度以及搅拌器的安装位置,明确了斜叶涡轮式搅拌器更适合固液混合体系,并且在安装高度为直径的0.5~0.8倍时,能够在较低的临界转速下,使固体颗粒达到完全离底悬浮,明显降低搅拌功耗,具有良好的经济效益. On the basis of the computational fluid dynamics (CFD) method and the model of Euler two-phase flow, a numerical simulation was developed for the mixing process of two-phase flow of solid-liquid in vessels. The distribution of solid-liquid two-phase flow at different rotation speeds was investigated, yielding the critical rotation speed that makes all the solids be suspended from the bottom. The results showed that the central depositional area was gradually decreased with increasing the rotation speed. For the flat blade turbine agitator, when the rotation speed was increased to be higher than 300 r/min, all the solids were suspended from the bottom. The critical rotation speed was only 250 r/min for the pitched turbine type agitator. In case the installation position was changed, both the two types of agitator can make all the solid particles be suspended from the bottom at a lower rotation speed. We subsequently performed experiments on the mixing of water and silver sand. On the basis of these experiments, the critical rotation speed and the rotation torque were obtained. These results clearly showed that the numerical simulation results were validated by the mixing experiments. Besides, by changing the angle of the blades and the installation position, the mixing experiments and the numerical simulations showed well consistent. It was demonstrated that the pitched turbine type agitator was more suitable for the two-phase mixing of solid-liquid flow. The solid particles can suspend at a lower critical rotation speed in case the installation height is 0.5~0.8 times higher than the diameter of agitator, which can remarkably reduce the mixing power and achieve more economic benefits.
作者 许叶龙 刘迎圆 惠虎 於晔鸿 XU Yelong;LIU Yingyuan;HUI Hu;YU Yehong(School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;The College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China)
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第4期675-680,共6页 Journal of East China University of Science and Technology
基金 国家自然科学基金(51806145)
关键词 固液混合 临界转速 安装位置 搅拌实验 solid-liquid mixing critical speed installation position mixing experiment
  • 相关文献

参考文献4

二级参考文献35

  • 1杨敏官,来永斌.搅拌槽内固液悬浮特性的试验研究[J].机械工程学报,2011,47(6):186-192. 被引量:22
  • 2李良超,张仲敏,黄雄斌.固液搅拌槽内近壁区液相速度研究[J].北京化工大学学报(自然科学版),2005,32(1):33-38. 被引量:17
  • 3刘明言,杨扬,薛娟萍,胡宗定.气液固三相流化床反应器测试技术[J].过程工程学报,2005,5(2):217-222. 被引量:7
  • 4团体著者,化工工艺设计手册.下,1986年,439页
  • 5孙会,潘家祯.新型内外组合搅拌桨的开发及流场特性[J].机械工程学报,2007,43(11):56-62. 被引量:13
  • 6Micale G,Grisafi F,Rizzuti L,et al.CFD simulation of particle suspension height in stirred vessels. Chemical Engineering . 2004
  • 7Aoyi Ochieng and Alison E. Lewis.CFD simulation of solids off-bottom suspension and cloud height. Hydrometallurgy . 2006
  • 8van der Westhuizen A P,,Deglon D A.Evaluation of solidssuspension in a pilot-scale mechanical flotation cell:the critical i mpeller speed. Miner.Eng . 2007
  • 9Hicks M T,Myers K J,Bakker A.Cloud height in solids suspension agitation. Chemical Engineering . 1997
  • 10Bujalski.W,Takenaka.K,Paolini.S,Jahoda.M,Paglianti.A,Takahashi.K,Nienow,A.W,Etchells.Suspension and liquid homogenization in high solids concentration stirred chemical reactors. Chemical Engineering . 1999

共引文献40

同被引文献61

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部