期刊文献+

一类新的m重Rogers-Ramanujan恒等式及应用 被引量:1

A Class of New m-Multisum Rogers-Ramanujan Identities and Applications
下载PDF
导出
摘要 Rogers-Ramanujan恒等式是分拆理论和组合学中著名的恒等式,被广泛的证明和推广.该文应用双边Bailey引理和迭代技巧建立一类新的多重和Rogers-Ramanujan恒等式. Rogers-Ramanujan identities are among the most famous q-series in partition theory and combinatorics, they have been proved and generalized widely. The purpose of this paper is to establish a class of new multisum Rogers-Ramanujan identities by applying the bilateral Bailey lemma and iterating technique.
作者 张之正 李晓倩 Zhang Zhizheng;Li Xiaoqian(Department of Mathmetics, Luoyang Normal University, Henan Luoyang 471934;College of Mathematics and Information Science, Henan Normal University, Henan Xinxiang 453001)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2019年第4期851-864,共14页 Acta Mathematica Scientia
基金 国家自然科学基金(11871258)~~
关键词 双边Bailey引理 移位Bailey对 多重Rogers-Ramanujan恒等式 Bilateral Bailey lemma Shifted Bailey pair Multisum Rogers-Ramanujan identities
  • 相关文献

参考文献1

二级参考文献11

  • 1Kongsiriwong S, Liu Z G. Uniform proofs of q-series-product identities. Results Math, 2003, 44(3/4) 312 339.
  • 2Zhu J M. A sextuple product identity with applications. Mathematical Problems in Engineering, Voi 2011 Article ID 462507, 11 pages.
  • 3Rogers L J. Second memoir on the expansion of certain infinite products. Proc London Math Soc, 1894 25:318-343.
  • 4Hecke E. Mathematische Werke. G6tingen: Vandenhoeck & Ruprecht, 1959.
  • 5Andrews G E. Hecke modular forms and the KAC-Peterson identities. Trans Amer Math Soc, 1984 283(2): 451-458.
  • 6Andrews G E. The fifth and seventh order mock theta functions. Trans Amer Math Soc, 1986, 293(1) 113-134.
  • 7Kac V G, Peterson D H. Affine Lie algebras and Hecke modular forms. Bull AmerMath Soc (N S), 1980 3(3): 1057-1061.
  • 8Liu Z G. An expansion formula for q-series and applications. Ramanujan J, 2002, 6(4): 429-447.
  • 9Ewell J A. Completion of a Gaussian derivation. Proc Amer Math Soc, 1982, 84(2): 311-314.
  • 10Shen L C. On the products of three theta functions. Ramanujan J, 1999, 3(4): 343-357.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部