期刊文献+

数据点加权最小二乘渐进迭代逼近及其B样条曲线拟合 被引量:20

Data-Weighted Least Square Progressive and Iterative Approximation and Related B-Spline Curve Fitting
下载PDF
导出
摘要 为了使B样条拟合曲线插值部分数据点且逼近其余数据点,提出数据点加权的最小二乘渐进迭代逼近(DW-LSPIA)算法,证明了其收敛性并以它为基础提出一种B样条曲线拟合算法.首先赋初始权重于每个数据点,用DW-LSPIA算法生成初始拟合曲线;然后根据待插值点与拟合曲线上对应点的误差调整待插值点的权重,并重新运用DW-LSPIA算法生成新的拟合曲线;如此迭代,直至拟合曲线达到插值要求.实例结果表明,该拟合算法鲁棒、高效,也可使拟合曲线保形. In order to make the fitting curves interpolate some data points and approximate others,we propose the data-weighted least square progressive and iterative approximation(DW-LSPIA)algorithm and prove its convergence.Based on DW-LSPIA,we present a B-spline curve fitting scheme.First,we define initial weights for all data points to be interpolated and get a B-spline fitting curve by DW-LSPIA.Then we update all weights according to the errors between data points to be interpolated and their corresponding points on the fitting curve and update the B-spline fitting curve by DW-LSPIA again.We update the weights and fitting curves iteratively until the interpolation accuracy is satisfied.Examples showed that the B-spline fitting algorithm is robust,efficient and can obtain shape-preserving fitting curves.
作者 李莎莎 徐惠霞 邓重阳 Li Shasha;Xu Huixia;Deng Chongyang(School of Science,Hangzhou Dianzi University,Hangzhou 310018;Institute of Mathematics,Zhejiang Wanli University,Ningbo 315100)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第9期1574-1580,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61872121,61761136010) 浙江省自然科学基金(LQ17A010009)
关键词 曲线插值 曲线拟合 B样条 curve interpolation curve fitting B-spline
  • 相关文献

参考文献7

二级参考文献87

  • 1史利民,王仁宏.NURBS曲线曲面拟合数据点的迭代算法[J].Journal of Mathematical Research and Exposition,2006,26(4):735-743. 被引量:22
  • 2Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 1978, 10(6): 350 355.
  • 3Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design, 1978, 10(6): 356-360.
  • 4Loop C. Smooth subdivision surfaces based on triangles [Master' Thesis]. Dept. Math., Univ. Utah, 1987.
  • 5Dyn N, Levin D, Gregory J A. A butterfly subdivision scheme for surface interpolation with tension control. A CM Trans. Graphics, 1990, 9(2): 160-169.
  • 6Zorin D, SchrSder P, Sweldens W. Interpolating subdivision for meshes with arbitrary topology. Computer Graphics, Ann. Conf. Series, 1996, 30: 189-192.
  • 7Kobbelt L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput. Graph. Forum, 1996, 5(3): 409-420.
  • 8Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull-Clark surfaces. In Proc. SIGGRAPH 1993, Anaheim, USA, August 1-6, 1993, pp.47 61.
  • 9Nasri A H. Surface interpolation on irregular networks with normal conditions. Computer Aided Geometric Design, 1991, 8:89 -96.
  • 10Zheng J, Cai Y Y. Interpolation over arbitrary topology meshes using a two-phase subdivision scheme. IEEE Trans. Visualization and Computer Graphics, 2006, 12(3): 301-310.

共引文献98

同被引文献159

引证文献20

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部