期刊文献+

基于多特征联合稀疏表示的人脸识别方法 被引量:4

Face recognition based on joint sparse representation of multiple features
下载PDF
导出
摘要 针对人脸识别问题,提出一种基于多特征联合稀疏表示的方法。首先,分别采用主成分分析(PCA)、核主成分分析(KPCA)和非负矩阵分解(NMF)提取人脸图像的特征矢量。三种特征从线性、非线性以及非负表示三种层面描述了人脸图像的特征。在分类阶段,采用联合稀疏表示对三种特征进行综合决策,考察它们的内在关联。最后,基于三种特征的整体重构误差判定测试样本的类别。实验中,基于AR和Yale-B人脸数据库对提出方法进行性能测试。结果表明文中方法的有效性。 For the face recognition problem,a method based on joint sparse representation of multiple features is proposed.Firstly,PCA,KPCA and NMF are used to extract feature vectors from face images.The three features describe the characteristics of face images from linearity,nonlinearity and non-negativity.In the classification stage,joint sparse representation is used to classify the three features thus considering their inner correlations.Finally,the total reconstruction error of the three features are calculated to determine the target label.In the experiments,performance tests are conducted on AR and Yale-B face databases.The results show the effectiveness of the proposed method.
作者 申杨 SHEN Yang(Information and Communication Branch of State Grid Liaoning Electric Power Co.,Ltd.,Shenyang 110006,China)
出处 《信息技术》 2019年第9期154-157,162,共5页 Information Technology
关键词 人脸识别 主成分分析 核主成分分析 非负矩阵分解 联合稀疏表示 face recognition PCA KPCA NMF joint sparse representation
  • 相关文献

参考文献9

二级参考文献62

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2刘维湘,郑南宁,游屈波.非负矩阵分解及其在模式识别中的应用[J].科学通报,2006,51(3):241-250. 被引量:38
  • 3张生亮,杨静宇.二维投影与PCA相结合的人脸识别算法[J].计算机工程,2006,32(16):165-166. 被引量:6
  • 4Zafeiriou S, Petrou M. Nonlinear Nonnegative Component Analysis[C]//IEEE Conference on Computer Vision and Pattern Ree ognition. 2009 : 2860-2865.
  • 5Lee D D,Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999,401 (6755) : 788-791.
  • 6Kim J, Lee C,Kim J, et al. A Changeable Biometric System That Uses Parts-Based Localized Representation for Face Recognition [C]//IEEE Workshop on Automatic Identification Advanced Technologies. 2007 : 165-168.
  • 7Li Yu-jian, Liu Bo, Yang Xin-wu, et al. Multiconlitron: A General Pieeewise Linear Classifier[J]. IEEE Transactions on Neural Networks, 2011,22 (2) : 276-289.
  • 8Lin Qing, Hu Rui-rui, Zhan Yong-zhao. Facial Expression Feature Extraction Based on Integral Image [C]// International Conference on Advanced Computer Theory and Engineering. 2009:1345-1351.
  • 9Guo Guodong, Li S Z, Kapluk Chan. Face Recognition by Support Vector Machines. Proceedings of Fourth IEEE International Conference on Automastie Face and Gesture Recognition, 2000: 196~201.
  • 10Tolba A S, Abu-Rezq A N. Combined Classifiers for Invariant Face Recognition. Pattern Analysis and Appilications,2001, 3: 289~302.

共引文献113

同被引文献23

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部