摘要
采用控温搅拌混合和热等静压等方法,制备添加氧化石墨烯的600℃高温钛合金复合材料。通过金相观察、能谱和物相分析以及拉伸性能实验,研究复合材料的微观组织和力学性能。结果表明:氧化石墨烯添加量为0.3%(质量分数,下同)时,在600℃高温钛合金粉末中分布比较均匀,二者之间的作用方式主要为物理吸附;与未添加氧化石墨烯的合金相比,添加0.3%氧化石墨烯的复合材料的显微组织得到明显细化,α相的平均尺寸下降约36%,室温抗拉强度和屈服强度分别提高7.8%和10.4%,硬度提高25.6%。氧化石墨烯对600℃高温钛合金的强化机理主要为细晶强化、位错强化以及促进(TiZr) 6Si 3颗粒析出引起的第二相强化。
The 600℃ high temperature titanium alloy composite with graphene oxide addition was prepared by temperature-controlled mixing method and hot isostatic pressing. Microstructure and mechanical properties of composite were studied by metallographic observation, energy spectrum analysis, phase analysis and tensile test. The results show that graphene oxides are dispersed uniformly in the 600℃ high temperature titanium alloy powder when the content of graphene oxide is 0.3%(mass fraction) and the main mode of action is physical adsorption. Compared with the alloy without graphene oxide, the microstructure of the composite with 0.3% graphene oxide is obviously refined, and the average size of equiaxed alpha phase is reduced by 36%. Meanwhile, the average room temperature tensile strength and yield strength increase by 7.8% and 10.4% respectively and Vickers hardness increases by 25.6%. The strengthening mechanisms of graphene oxide on 600℃ high temperature titanium alloy mainly include grain refinement strengthening,dislocation streng-thening and precipitation strengthening of the (TiZr) 6Si 3 second-phase.
作者
陈航
弭光宝
李培杰
王旭东
黄旭
曹春晓
CHEN Hang;MI Guang-bao;LI Pei-jie;WANG Xu-dong;HUANG Xu;CAO Chun-xiao(Aviation Key Laboratory of Science and Technology on AdvancedTitanium Alloys,AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China;National Center of Novel Materials forInternational Research,Tsinghua University,Beijing 100084,China;Beijing Engineering Research Center of Grapheneand Application,Beijing 100095,China)
出处
《材料工程》
EI
CAS
CSCD
北大核心
2019年第9期38-45,共8页
Journal of Materials Engineering
基金
中国航发自主创新专项和石墨烯专项(CXPT-2018-36/GR176515)
北京市重大科技专项(Z171100002017016)
关键词
氧化石墨烯
600℃高温钛合金
复合材料
微观组织
力学性能
graphene oxide
600℃ high temperature titanium alloy
composite
microstructure
mech-anical property