期刊文献+

超声-电火花加工平台建模与控制算法研究

Research on Modeling and Control Algorithm of Ultrasonic-electrical Discharge Machining Platform
下载PDF
导出
摘要 针对平台所用的永磁同步伺服电动机,推导出永磁同步伺服电动机的数学模型,建立支路控制系统数学模型,并求出传递函数,针对超声-电火花复合加工的特点提出RBF神经网络PID控制算法。通过Matlab仿真结果对比,得出结论,与传统PID控制算法相比,RBF神经网络PID控制算法可以减少加工平台的调节时间、超调量,并且增加控制系统的抗干扰性。 In view of permanent magnet synchronous servo motor used for the platform, mathematical model of permanent magnet synchronous servo motor is built. The mathematical model of the branch control system is built to deduce transfer function. In view of the features of the platform, RBF neural network PID control algorithm is proposed. The comparison of Matlab simulation results is used to draw a conclusion: compared with traditional PID control algorithm, the RBF neural network PID control algorithm can lower the adjustment time and overshoot of processing platform, and strengthen the anti-interference capability of control system.
作者 徐明刚 高峰 XU Minggang;GAO Feng(School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China)
出处 《机械工程师》 2019年第9期30-33,共4页 Mechanical Engineer
基金 北京市自然科学基金项目(3162011)
关键词 超声-电火花加工 PID控制 神经网络 MATLAB ultrasonic-electric arc machining PID control algorithm neural network Matlab
  • 相关文献

参考文献6

二级参考文献85

  • 1邹积浩,朱善安.基于电压预测的直线永磁同步电机直接推力控制[J].仪器仪表学报,2005,26(12):1262-1266. 被引量:13
  • 2王德斌.交流伺服进给系统及其数学模型的研究[J].机械制造与自动化,2006,35(1):86-88. 被引量:30
  • 3杜福银,徐扬,陈树伟.基于递归神经网络模型预测控制的模型平稳切换[J].计算机应用,2006,26(6):1398-1400. 被引量:3
  • 4俞希递,谢宝昌.永磁同步直线电机速度H_∞控制系统设计[J].电机与控制应用,2007,31(6):20-23. 被引量:3
  • 5FARDADI M, SELK GHAFARI A, HANNANI S K. PID neural network control of SUT building energy management system[C]//Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. New York: IEEE Press, 2005:682 - 686.
  • 6SHU H L, SHU H. Simulation study of PID neural network temperature control system in plastic injecting-moulding machine[C]//Proceedings of the 6th International Conference on Machine Learning and Cybernetics. New York: IEEE Press, 2007:492 - 497.
  • 7KENNEDY J, EBERHART R C. Particle swarm optimization[C] //Proceedings of lEEE International Conference on Neural Networks. New York: IEEE Press, 1995:1942 - 1948.
  • 8LI M, YANG C W. A modified PSO learning algorithm for PID neural network[C] //Proceedings of the 25th Chinese Control Conference. Beijing: Beijing University of Areonautics and Astronautics Press, 2006:1123 - 1125.
  • 9CHEN J Y, ZHENG Q. Particle swarm optimization with Local Search[C]//Proceedings of International Conference on Neural Networks and Brain. New York: IEEE Press, 2005:481 - 484.
  • 10SHI Y, KENNEDY R C. A modified particle swarm optimizer[C] //Proceedings of the IEEE Congress on Evolutionary Computation. New York: IEEE Press, 1998: 69- 73.

共引文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部