期刊文献+

基于改进Faster R-CNN的子弹外观缺陷检测 被引量:6

Bullet Appearance Defect Detection Based on Improved Faster Region-Convolutional Neural Network
原文传递
导出
摘要 为了实现子弹外观缺陷的自动检测,解决传统机器视觉方法在缺陷检测方面手工设计目标特征耗时和泛化能力差的问题,针对子弹外观缺陷数据集,采用K-means++算法改进锚框的生成方法,提出了Faster R-CNN子弹外观缺陷检测模型。该模型采用卷积神经网络,可以自动提取目标特征,泛化能力强。将该检测模型分别与ZFNet、VGG_CNN_M_1024和VGG16结合,结果表明,与VGG16结合的检测模型的检测精度高于其他两种模型方案,并且在所提算法的基础上,精度提升到了97.75%,速度达到28frame·s^-1。 To realize automatic detection of bullet appearance defects and to overcome the limitations associated with traditional machine vision methods,i.e.,excessive time required to manually design a target feature and generalization ability is poor in defect detection,we use the K-means++ algorithm to improve the anchor frame generation method and propose a bullet appearance defect detection model based on the improved faster regionconvolutional neural network(R-CNN).The proposed model uses a CNN that can automatically extract target features and has strong generalization ability.The detection model is combined with ZFNet,VGG_CNN_M_1024,and VGG16,respectively.Results demonstrate that the detection accuracy of the detection model combined with VGG16 is higher than the others.The results show that that of the improved model demonstrates 97.75%accuracy and the speed reaches 28 frame·s^-1.
作者 马晓云 朱丹 金晨 佟新鑫 Ma Xiaoyun;Zhu Dan;Jin Chen;Tong Xinxin(Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China;Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China;University of Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Opto-Electronic Information Processing, CAS, Shenyang, Liaoning 110016, China;The Key Lab of Image Understanding and Computer Vision,Shenyang, Liaoning 110016, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第15期109-116,共8页 Laser & Optoelectronics Progress
关键词 测量 目标检测 子弹外观缺陷 卷积神经网络 measurement target detection bullet appearance defect convolutional neural network
  • 相关文献

参考文献10

二级参考文献64

  • 1万源,李欢欢,吴克风,童恒庆.LBP和HOG的分层特征融合的人脸识别[J].计算机辅助设计与图形学学报,2015,27(4):640-650. 被引量:71
  • 2韩英莉,颜云辉.基于BP神经网络的带钢表面缺陷的识别与分类[J].仪器仪表学报,2006,27(12):1692-1694. 被引量:27
  • 3冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2007.
  • 4张峥,王艳平.数字图像处理与机器视觉[M].北京:人民邮电出版社.2010.1.
  • 5Otsu N. A threshold selection method from gray - level his- tograms[ J ]. IEEE Transactions on System, Man and Cyber- netics, 1979,9 ( 1 ) :62 - 66.
  • 6GJB5227-2004,枪弹外观缺陷图谱[S].北京:总装备部军标出版发行部,2004.
  • 7Zhu Jie, CH. Kranthi Rekha, A. Sadiq Batcha. Implemen- tation of Modified KL Transform for LPR Systems [ J]. Eu- ropean Journal of Scientific Research, 2012,67 ( 4 ) : 521 - 531.
  • 8Canny J F. A Computational Approach to Edge to Detection [J]. IEEE Trans on Pattern Analysis and Machine Intelli- gence, 1986,8(6 ) : 679-698.
  • 9Lee S, Chung S.A Comparative Performance Study of Sever- al Global Thresholding Techniques for Segmentation [J]. Computer Vision,Graphics,and Image Processing, 1990.52: 171-190.
  • 10张洪星.金致洙,曹志刚,等.中华人民共和国国家军用标准GJB5227-2004《枪弹外观缺陷圉谱》[s].北京:总装备部,2004.

共引文献221

同被引文献57

引证文献6

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部