期刊文献+

Landsat与MODIS卫星数据的双向融合实验 被引量:1

Two-way fusion experiment of Landsat and MODIS satellite data
原文传递
导出
摘要 针对如何在时间序列尺度上利用多源时空融合方法高精度地重构高分辨率遥感影像的问题,该文提出了一种基于增强字典学习样本空间的单数据对稀疏学习融合算法,并利用现有稀疏学习算法、STARFM算法以及半物理模型对Landsat与MODIS卫星数据进行双向融合实验。结果表明:随着样本尺寸及空间的拓展,改进后的稀疏学习算法能够获得比原始算法、STARFM、半物理模型等算法更优的融合结果,其中ERGAS可达15.0以内、SSIM可达84%以上,并且融合质量对高、低分辨率图像间的空间尺度差异性不敏感。通过采用更高效的在线字典学习算法,该融合方法的处理效率与应用价值有望得到极大提升。 To accurately reconstruct high resolution remotely sensed data on the time series dimension with multi-source Spatiotemporal fusion techniques,a sparse-learning fusion algorithm using single-pair images is proposed on a basis of an enhanced sample space in the dictionary learning process,and the original algorithm,the STARFM and the semi-physical fusion model are employed for a bi-directional fusion test with Landsat and MODIS satellite data.The results show that the proposed algorithm can obtain better performance than the original version,STARFM and the semi-physical model with the extending of the training sample size and training space.In detail,the ERGAS can be under 15.0 and the SSIM can be above 84%,and the correlation lacks between fusion quality and spatial resolution.The efficiency and application value of the proposed method can be significantly promoted by using the effective online dictionary learning algorithm.
作者 葛艳琴 李彦荣 孙康 李大成 陈永红 李瑄 GE Yanqin;LI Yanrong;SUN Kang;LI Dacheng;CHEN Yonghong;LI Xuan(Taiyuan University of Technology,Taiyuan 030024,China;The 54th Research Institute of China Electronics Technology Group Corporation,Shijiazhuang 050081,China;Shanxi Center for Data and Application of High Resolution Earth Observation System,Jinzhong,Shanxi 030600,China)
出处 《测绘科学》 CSCD 北大核心 2019年第9期107-114,共8页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41501372) 山西省高等学校科技创新项目(2016144)
关键词 稀疏学习 字典训练 陆地卫星数据 地表反射率 时空融合 sparse learning dictionary training Landsat data surface reflectance spatiotemporal fusion
  • 相关文献

参考文献2

二级参考文献10

  • 1Lunetta R S, Lyon J G, Guindon B, et al. North Americal landscape characterization dataset development and fusion issues[ J]. Photogrammetric Engineering & Remote Sens- ing, 1998,64:821 - 829.
  • 2Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance: Predicting dai- ly Landsat surface reflectance [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2006,44:2207-2218.
  • 3Settle J J, Drake N A. Linear mixing and the estimation of groundcover proportion [ J ]. International Journal of Remote Sensing, 1993,14 : 1159 - 1177.
  • 4Cherechali S, Amram O, Flouzat G.. Retrieval of temporal profiles of reflectances from simulated and real NOAA- AVHRR data over heterogeneous landscapes [ J ]. Interna- tional Journal of Remote Sensing, 2000,21 : 753 - 775.
  • 5Zhukov S, Oertel D, Lanzl F, et al. Unmixing-based multi- sensor muhiresolution image fusion [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37:1212- 1226.
  • 6Maselli F. Definition of spatially variable spectral endmem- bers by locally calibrated multivariate regression analyses [ J]. Remote Sensing of Environment,2001,75:29 - 38.
  • 7Lorenzo Busetto , Michele Meronib, Roberto Colombo. Combining medium and coarse spatial resolution satellite da- ta to improve the estimation of sub-pixel NDVI time series [J]. Remote Sensing of Environment, 2008, 112:118 - 131.
  • 8Thomas Hilker, Michael A Wulder, Nicholas C Coops, et al. A new data fusion model for high spatial- and temporal- resolution mapping of forest disturbance based on Landsat and MODIS [ J ]. Remote Sensing of Environment, 2009, 113 : 1613 - 1627.
  • 9Ray T W, Murray B C. Nonlinear spectral mixing in desert vegetation[J]. Rem. Sens. Environ. 1996,55:59-64.
  • 10王宗明,张柏,张树清.吉林省生态系统服务价值变化研究[J].自然资源学报,2004,19(1):55-61. 被引量:240

共引文献47

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部