期刊文献+

基于BP神经网络的汽车尾气检测系统设计

Design of automobile exhaust detection system based on BP neural network
下载PDF
导出
摘要 汽车使用量的快速增长,在很大程度上解决了人们的出行问题,但同时也向环境保护提出了更大的挑战。为检测车辆排放的尾气中污染物的种类与数量,设计汽车尾气检测系统,介绍了系统中软件与硬件组成,基于C#语言开发上位机软件对采集数据进行处理与显示,并在检测系统中加入基于BP神经网络的预测模型。通过实验结果分析可知,该测量系统具有较强的检测能力和较高的检测精度,能够对5种气体进行准确测量,此外,将BP神经网络模型应用在该尾气检测系统中,使得预测系统具有更高的预测精度,收敛速度大幅度增加,能够较好地适应汽车尾气预测系统,解决实际预测难题。 The rapid growth of car use has largely solved the problem of people's travel,but it also poses a greater challenge to environmental protection.In order to detect the types and quantities of pollutants in vehicle exhaust,the automobile exhaust detection system is designed,and the software and hardware components of the system are introduced.The upper computer software based on C# language is developed to process and display the collected data,and a prediction model based on BP neural network is added to the detection system.By analysing the experimental result shows that the measuring system has strong ability of detection and high detection accuracy,can carry on the accurate measurement of five kinds of gas,in addition,the BP neural network model used in the tail gas detection system,made the forecast system has higher prediction accuracy,convergence speed increase,can better adapt to the automobile exhaust prediction system,to solve practical prediction problem.
作者 周唤雄 Zhou Huanxiong(Gansu Vocational and Technical College of Communications,Gansu Lanzhou 730070)
出处 《汽车实用技术》 2019年第18期107-108,126,共3页 Automobile Applied Technology
关键词 BP神经网络 汽车尾气 检测系统 C#语言 BP neural network automobile exhaust detection system C# language
  • 相关文献

参考文献4

二级参考文献30

  • 1周亦斌,王俊.电子鼻在食品感官检测中的应用进展[J].食品与发酵工业,2004,30(2):129-132. 被引量:54
  • 2苏会波,林海龙,李凡,靖苏铜,王伟.乙醇汽油对减少机动车污染排放的机理研究与分析[J].环境工程学报,2015,9(2):823-829. 被引量:28
  • 3涂兴华,刘文清,董凤忠,张玉钧,王铁栋,齐锋,刘建国,谢品华.基于可调谐二极管激光吸收光谱技术在线监测机动车尾气排放CO和CO2的方法[J].高技术通讯,2006,16(9):980-984. 被引量:6
  • 4Shita S, Shima K, Haruta T. Discrimination of Odors Emanating from 'La France ' Pear by Semiconducting Polymer Sensors[J]. Computers and Electronics in Agriculture, 2000, 26:209-216.
  • 5Schweizer-Berberich M, Vahinger S, Gopel W. Characterisation of Fishness with Sensor Array[J]. Sensors and Actuators B 1994, 18-19: 282-290.
  • 6Bourrounet B, Talou H. , Gaset A. Application of a Multigas Sensor Device in the Meat Industry for Boar-Taint Detection[J]. Sensors and Actuators B, 1995 : 250-254.
  • 7Dutta R, Hines E L, Gardner J W, et al. Tea Quality Prediction Using a Tin Oxide-Based Electronic Nose: An Artificial Intelligence Approach[J]. Sensors and Actuators B 2003, 94:228-237
  • 8Pati S. ,Maity A. ,Banerji P tative differentiation of gases , et al. Qualitative and quanti- using ZnO thin film gas sen- sors and pattern recognition analysis. Analyst, 2014, 139 (7) :1796-1800.
  • 9Zhang L. , Tian F. , Liu S. , et al. Chaos based neural net- work optimization for concentration estimation of indoor air contaminants by an electronic nose. Sensors and Actuators A : Physical ,2013,189 : 161-167.
  • 10Gao L. , Hu S. , Li Z. A face recognition method based on a combination of integrated neural network and KICA algo- rithm [ C ]//Systems and Informatics (ICSAI) , 2012 Inter-national Conference on. IEEE ,2012:2108-2112.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部