期刊文献+

基于改进遗传PID算法的能量回馈制动系统 被引量:3

Energy Feedback Braking System Based on Improved Genetic PID Algorithm
下载PDF
导出
摘要 针对目前能量回馈系统效率低的问题,提出一种基于改进的遗传PID(比例-积分-微分)算法对能量回馈系统进行控制.首先建立回馈制动的数学模型,然后根据其模型采用仿真软件(MATLAB),并结合改进的遗传PID算法进行仿真实验.实验结果表明,改进的遗传PID算法比传统PID算法控制效果更好,稳定性、鲁棒性及抗干扰能力更强,且回收效率提高了25.8%. Aiming at the problem of low efficiency of energy feedback system,we proposed improved genetic PID(proportional-integral-derivative)algorithm to control an energy feedback system.First,the mathematical model of feedback braking was established.Then,according to the model,simulation software(MATLAB)combined with improved genetic PID algorithm was used to carry out the simulation experiment.The experimental results show that compared with the traditional PID algorithm,the improved genetic PID algorithm has better control effect,stronger stability,robustness and anti-interference ability,and the recovery efficiency is improved by 25.8%.
作者 薛鹏 刘国斌 崔弘 王海彪 王春雷 XUE Peng;LIU Guobin;CUI Hong;WANG Haibiao;WANG Chunlei(College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China;Jilin Songhua River Thermal Co., Ltd, Jilin 132000, Jilin Province, China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2019年第5期1200-1206,共7页 Journal of Jilin University:Science Edition
基金 吉林省重点科技研发项目(批准号:20180201129GX)
关键词 PID算法 遗传算法 回馈能量 PID algorithm genetic algorithm feedback energy
  • 相关文献

参考文献6

二级参考文献30

  • 1黄斐梨,王耀明,姜新建,刘士祥,李发海.电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究[J].电工技术学报,1995,10(3):28-31. 被引量:56
  • 2徐勇 荆涛译.神经网络模式识别及其实现[M].北京:电子工业出版社,1999..
  • 3[1]Leon Bobrowski.Design of piecewise linear classifiers from formal neurons by a basis exchange technique[J].PatternRecognition,1991,24(9):863-870.
  • 4Zhou Haobin,Long Bo,Cao Binggang.H infinity robust controller for electric bicycles[G]//Proceeding of 2008 Workshop on Power Electronics and Intelligent Transportation System.Guangzhou:[s.n.],2008:131-135.
  • 5Chau K T,Chan C C,Liu Chunhua.Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles[J].IEEE Transactions on Industrial Electronics,2008,55(6):2246-2257.
  • 6Liang Chi-Ying,Lin Wai-Hon,Chang Bruce.Applying fuzzy logic control to an electric bicycle[C]//First International Conference on Innovative Computing,Information and Control.Beijing:[s.n.],2006:513-516.
  • 7Somchaiwong N,Ponglangka W.Regenerative power control for electric bicycle[C]//2006 SICE-ICASE International Joint Conference.Busan:SICE-ICASE,2006:4362-4365.
  • 8Friedlmeier G, Friedric J, Panik F. Test experiences with the daimler chrysler hydrogen-fueled fuel cell electric vehicle NECAR4[J]. Fuel Cells, 2001,1(2):92-96.
  • 9Ibtiouene R. Steady-state torque analysis of a brushless direct current motor with inset permanent magnets[J]. Electric Machines and Power Systems, 1999,27(1):11-23.
  • 10王景芳.人工神经网络进行非线性模式识别[J].湖南涉外经济学院学报,2003,(4):56-58.

共引文献46

同被引文献22

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部