期刊文献+

锆钛比和烧结温度对PMS-PZT压电陶瓷性能的影响

Effect of Zirconium-Titanium Ratio and Sintering Temperature on the Properties of PMS-PZT Piezoelectric Ceramics
下载PDF
导出
摘要 本文采用传统固相烧结法制备Pb0.995Sr0.005(ZrxTi1-x)0.96(Sb2/3Mn1/3)0.04O3压电陶瓷,研究了锆钛比和烧结温度对该体系的压电陶瓷性能的影响,并测试其居里温度。结果表明:陶瓷的压电性能随Zr/Ti减小先升高后下降,当Zr/Ti为50.5/49.5时,该体系的压电性能取得最大值;压电陶瓷的压电性能随烧结温度增加先升高然后下降,在1200℃烧结温度下,当Zr/Ti=50.5/49.5时,获得最优的综合性能,此时εT33/ε0=1628,tanδ=0.45%,Kp=0.73,d33=409pC/N,Qm=700;在所研究的组成范围内,随着Zr/Ti的减小,介电常数温度图谱峰值向高温移动,当Zr/Ti=50.5/49.5时,介电峰值对应的居里温度为325℃。 The Pb0.995Sr0.005(ZrxTi1-x)0.96(Sb2/3Mn1/3)0.04O3(Abbreviated as PMS-PZT) piezoelectric ceramics were prepared by conventional solid solution method. The effects of zirconium-titanium ratio and sintering temperature on the properties of piezoelectric ceramics were studied, and Curie temperature of the system were discussed. The results show that, the piezoelectric properties of the ceramics first increased and then decreased with the decrease of Zr/Ti. When Zr/Ti is 50.5/49.5, the optimum properties of the system are obtained;the piezoelectric properties of piezoelectric ceramics first increase and then decrease with the increase of sintering temperature, The optimum properties are obtained with Zr/Ti=50.5/49.5 at sintering temperature of 1200℃. The main parameters:εT33/ε0=1628, tanδ=0.45%, Kp=0.73, d33=409pC/N, Qm=700;In the range of composition studied, dielectric peak mobile to higher temperature with the decrease of Zr/Ti. When Zr/Ti=50.5/49.5, the Curie temperature corresponding to the dielectric peak is 325℃.
作者 刘长流 张珍宣 张元松 赖炜 张玉芬 LIU Chang-liu;ZHANG Zhen-xuan;ZHANG Yuan-song;LAI wei;ZHANG Yu-fen(Guizhou Zhenhua Hongyun Electronics Co., LTD., Guiyang 550018, China)
出处 《佛山陶瓷》 2019年第9期10-13,36,共5页 Foshan Ceramics
基金 贵州省科技计划项目(合同编号:黔科合成果[2019]4004号)
关键词 压电陶瓷 锆钛比 烧结温度 压电介电性能 居里温度 Piezoelectric ceramics Zirconium-titanium ratio Sintering temperature Piezoelectric dielectric properties Curie temperature
  • 相关文献

参考文献3

二级参考文献23

  • 1王晓莉,姚熹.MnO_2对0.85Pb(Zn_(1/3)Nb_(2/3))O_3-0.15B[J].硅酸盐学报,1994,22(4):381-386. 被引量:3
  • 2Haertling G H. J. Am. Ceram. Soc., 1999, 82: 797-818.
  • 3He Z M, Ma J, Zhang R F, et al. J. Eur. Ceram. Soc., 2003, 23: 1943-1947.
  • 4Gao Y K, Chen Y H, Ryu J G, et al. Jpn. J. Appl. Phys., 2001, 40: 687-693.
  • 5He L X, Gao M, Li C E. J. Eur. Ceram. Soc., 2001, 21: 703-709.
  • 6Corker D L, Whatmore R W, Ringgaard E. J. Eur. Ceram. Soc., 2000, 20: 2039-2045.
  • 7Galassi C, Roncari E, Capiani C, et al. J. Eur. Ceram. Soc., 1999, 19: 1237-1241.
  • 8Cheng S Y, Fu S L, Wei C C. Ceram. Int., 1987, 13: 223-231.
  • 9Sakaki C, Newalkar B L, Komarnen S. Jpn. J. Appl. Phys., 2001, 40: 6907-6910.
  • 10Yoon S J, Kang H W. J. Am. Ceram. Soc., 1998, 81: 2473-2476.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部