期刊文献+

Faster R-CNN模型在遥感图像飞机目标检测中的应用 被引量:4

Application of Faster R-CNN Model in Aircraft Target Detection in Remote Sensing Image
下载PDF
导出
摘要 针对遥感图像飞机目标检测问题,探讨了深度卷积神经网络模型Faster R-CNN在遥感图像中对飞机目标检测的应用。针对训练样本不足的问题,构建了Airplane-2018数据集,基于该数据集采用迁移学习的方式对Faster R-CNN模型进行训练,并在测试集上进行验证,在查全率达到95%的情况下,查准率可以达到85%。实验结果表明,Faster R-CNN模型在采用迁移学习方法训练后,在遥感图像飞机目标检测问题上具有可行性。 In view of the aircraft target detection in remote sensing images,the application of Faster R-CNN model used in aircraft target detection of remote sensing images is discussed.In order to solve the insufficiency of training samples,a novel Airplane-2018 dataset is built.The Faster R-CNN model is trained by using transfer learning method based on the proposed dataset,and the validation is carried out on the test set.The precision rate can reach 85% when the recall rate approaches 95%.The experiment results show that the Faster R-CNN model is feasible for aircraft target detection in remote sensing images after training with transfer learning method.
作者 常鹏飞 段云龙 CHANG Pengfei;DUAN Yunlong(The 27th Research Institute of CETC,Zhengzhou 450047,China)
出处 《无线电工程》 2019年第10期925-929,共5页 Radio Engineering
关键词 深度学习 迁移学习 FASTER R-CNN 遥感图像 飞机检测 deep learning transfer learning Faster R-CNN remote sensing images aircraft detection
  • 相关文献

参考文献7

二级参考文献119

共引文献607

同被引文献15

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部