期刊文献+

界面立构复合诱导聚乳酸/弹性体复合材料的超韧化及快速结晶

Super-toughening and rapid crystallization of polylactide/elastomer induced by interfacial stereo-complexation
下载PDF
导出
摘要 为了提高聚乳酸(PLA)的韧性和结晶速率,笔者对环氧化乙烯-醋酸乙烯酯弹性体(EVMG)接枝右旋聚乳酸(PDLA)并与左旋聚乳酸(PLLA)基体熔融共混,制备复合材料。结果表明:接枝的PDLA与PLLA基体在相界面原位形成了立构复合晶体,显著提高了弹性体与基体之间的界面作用力,从而赋予共混物优异的韧性,使PLLA的缺口冲击强度由1.1kJ/m^2提高至68.7kJ/m^2。同时,立构复合晶体还显著提高了PLLA基体的结晶速率,使PLLA在120℃条件下的半结晶时间缩短了81%。 To improve the toughness and crystallization rate of polylactide (PLA),the epoxidized ethylene-vinyl acetate elastomer was grafted with poly(D-lactide)(PDLA) and then melt-blended with poly(L-lactide)(PLLA) matrix.The results show that the interfacial adhesion between elastomer and matrix was significantly enhanced by forming stereo-complex crystallites in situ at the interface between the grafted PDLA and PLLA matrix,thereby affecting excellent toughness to the blend,and the notched impact strength of PLLA was improved from 1.1 kJ/m^2 to 68.7 kJ/m^2.Simultaneously,the stereo-complex crystallites significantly enhanced the crystallization rate of PLLA matrix,which shortened the half-life time of PLLA crystallization at 120 ℃ by 81%.
作者 吴保钩 翁云宣 东为富 王如寅 马丕明 WU Baogou;WENG Yunxuan;DONG Weifu;WANG Ruyin;MA Piming(School of Chemical and Material Engineering,Jiangnan University,Wuxi 214122,China;School of Material and Mechanical Engineering,Beijing Technology and Business University,Beijing 100037,China;Total Corbion PLA Co.,Ltd.,Shanghai 200001,China)
出处 《生物加工过程》 CAS 2019年第5期443-448,共6页 Chinese Journal of Bioprocess Engineering
基金 国家自然科学基金(51873082、51573074) 江苏省自然科学基金(BK20170053)
关键词 聚乳酸 弹性体 界面立构复合 增韧 生物基材料 polylactide elastomer interfacial stereo-complexation toughening bio-material
  • 相关文献

参考文献4

二级参考文献139

  • 1Oksman K, Skrifvars M, Selin J F. Natural fibres as reinforcement in polylactic acid (PLA) composites [ J ]. Compos. Sci. Technol., 2003, 63: 1324-1327.
  • 2Plackett D, Andersen T L, Pedersen W B, et al. Biodegradable composites based on L-polylactide and jute fibers[J]. Compos. Sci.Technol., 2003, 63(9): 1287-1296.
  • 3Benjamin B, Jorg M. Impact and tensile properties of PLA/Cordenka and PLA/flax composites[J]. Compos. Sci. Technol., 2008, 68: 1601-1607.
  • 4Yasuniwa M, Tsuhakihara S. Thermal analysis of the double-melting behavior of poly( L-lactic acid)[J]. J. Polym. Sei. Part B: Polym. Phys., 2004, 42: 25-32.
  • 5Mohanty A K, Mistra M, Drzal L T. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world[J]. J. Polym. Environ., 2002, 10(1/2): 19-25.
  • 6Keller A. Compounding and mechanical properties of biodegradable hemp fibre composites [ J ]. Compos. Sci. Technol., 2003, 63: 1307-1316.
  • 7Peterson S, Jayaraman K, Bhattacharyya D. Forming performance and biodegradability of woodfiber-Biopol^TM composites [ J ]. Composites Part A: Applied Science and Manufacturing, 2002, 33 (8): 1123-1134.
  • 8Rasal R, Janorkar A, Hirt D. Poly ( lactic Acid) Modifica- tions [ J ]. Prog Polym Sci ,2010,35:338 - 356.
  • 9Zhang Y, Wang Z, Jiang F. Effect of Miscibility on Spher- ulitic Growth Rate for Double-Layer Polymer Films [ J ]. Soft Matter,2013,9:5771 - 5778.
  • 10Chen C, Chueh J, Tseng H, et al. Preparation and Charac- terization of Biodegradable PLA Polymeric Blends [ J ]. Biomaterials ,2003,24 : 1167 - 1173.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部