期刊文献+

改进矩阵分解与卷积神经网络结合的推荐模型 被引量:10

Improved Model Combining Improved Matrix Decomposition and Convolutional Neural Networks
下载PDF
导出
摘要 针对推荐系统评分数据稀疏和评价信息爆增等问题进行模型研究和改进。在传统矩阵分解模型基础上加入了用户和项目的影响因子,提高预测模型的泛化能力;建立跨通道卷积神经网络对用户评价信息进行识别,将改进的矩阵分解模型与改进卷积神经网络进行结合,提出一种改进矩阵分解与跨通道卷积神经网络结合的推荐模型,提高预测模型的准确度。实验结果表明,该模型预测性能相对于PMF、CTR和CDL在三个数据集上的最优性能分别提升2.96%、10.27%和1.77%,相对于MF&CNN性能分别提升0.29%、2.98%和0.08%;当数据密度从20%增至80%时,模型预测性能会进一步提升。 Model research and improvement are carried out on issues such as sparse recommendation data scoring and evaluation information explosion.Firstly,based on the traditional matrix decomposition model,the paper adds the influence factors of users and projects to improve the generalization ability of the prediction model.Secondly,this paper establishes a cross-channel convolutional neural network to identify user evaluation information,combines the improved matrix decomposition model with the improved convolutional neural network,and proposes a combination of improved matrix decomposition and cross-channel convolutional neural network,model to improve the accuracy of the predictive model.The experimental results show that the optimal performance of the model is 2.96%,10.27% and 1.77% higher than that of PMF, CTR and CDL in three data sets respectively.The performance of MF&CNN is increased by 0.29%,2.98% and 0.08% respectively.When the data density increases from 20% to 80%,the model predicts performance will be further improved.
作者 蔡念 刘广聪 蔡红丹 CAI Nian;LIU Guangcong;CAI Hongdan(School of Computer,Guangdong University of Technolog,Guangdong 510006,China;School of Computer,Sanxia University,Yichang,Hubei 443002,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第19期178-184,共7页 Computer Engineering and Applications
基金 广州市科技计划项目(No.201508020030)
关键词 推荐系统 信息爆增 矩阵分解 卷积神经网络 recommended system Information explosion matrix factorization convolution neural network
  • 相关文献

参考文献3

二级参考文献4

共引文献25

同被引文献117

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部