摘要
为了提高分布式供能系统中化石能源的能源综合利用效率,提出了一种采用有机工质喷射器制冷的SOFC/MGT冷热电联供系统.首先建立并验证了该联供系统的数学模型,然后研究了空燃比、SOFC工作压力、SOFC入口温度、ORC工质流率等系统关键设计参数对联供系统能效及性能的影响.研究结果表明:在设计工况下,联供系统输出功率为300kW,并可同时向用户提供32.12kW热负荷及59.34kW冷负荷;联供系统发电效率、效率及能源综合利用效率分别为72.01%、61.87%、93.97%;通过梯级利用SOFC/MGT联合发电系统排气余热及再利用ORC透平排气余压,联供系统能源综合利用效率比单独的SOFC/MGT联合发电系统提高了30.81%;联供系统中损失最大的部件依次为SOFC、后燃烧室、回热器及预热器3.
To improve the overall energy efficiency of fossil energy utilized in distributed energy systems, a combined cooling, heating and power (CCHP) system based on SOFC(solid oxide fuel cell)/MGT(micro-gas turbine) integrated with an organic steam ejector refrigerator (SER) was proposed. First, a mathematical model for the CCHP system was developed and validated. Then, a parametric study was performed to observe the effects on key design parameters, such as air to fuel ratio , SOFC working pressure, SOFC inlet temperature, and mass flow rate of organic Rankine cycle (ORC) working medium on energy and exergy performances of the proposed system. The results indicate that under design conditions, the CCHP system can provide power, heating and cooling loads of 300, 32.12 and 59.34 kW, respectively. The electrical, the exergy and the overall energy efficiencies of the system are 72.01%, 61.87% and 93.97%. Through ORC/SER and heat exchanger based on the principle of “energy cascade utilization”, the overall energy efficiency of the CCHP system can increase by 30.81% compared with the single SOFC/MGT hybrid power system. It is also observed that the largest exergy loss occurs in SOFC followed by after burner, regenerator and preheater 3.
作者
游怀亮
韩吉田
刘洋
You Huailiang;Han Jitian;Liu Yang(School of Energy and Power Engineering, Shandong University, Jinan 250061, China)
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第5期840-850,共11页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金国际(地区)合作交流资助项目(41761144067)
国家自然科学基金资助项目(51376110)
关键词
冷热电联供系统
固体氧化物燃料电池
微型燃气轮机
喷射器
热力性能分析
combined cooling
heating and power (CCHP) system
solid oxide fuel cell
micro-gas turbine
steam ejector
thermodynamic analysis