期刊文献+

基于二维主成分分析的图像特征提取研究 被引量:6

Research on Image Feature Extraction Based on Two- dimensional Principal Component Analysis
下载PDF
导出
摘要 特征提取是图像目标处理分类和识别的关键。将像素信息表示的图像数据信息转换为特征向量,在减少数据量的同时保留图像中包含的原始信息。对主成分分析与二维主成分分析两种特征提取算法对比研究,提出一种改善的二维主成分分析图像特征提取算法。算法是基于二维度的图像矩阵,使用标准ORL人像数据库。实验结果表明该算法在效率、准确率上均优于主成分分析方法。 Image feature extraction has become the key to processing and sorting target image.The result of the feature extraction is to convert the image data information represented by the pixel information into a feature vector,so as to preserve the original information contained in the image while reducing the amount of data.The subject of this paper is a comparative study of two feature extraction algorithms: principal component analysis and two dimensional principal component analysis,put forward a kind of improved two dimensional principal component analysis of image feature extraction algorithms.The algorithm structure is based on a two dimensional image matrix directly.The experiment uses the standard ORL library as the face dataset.The experimental results show that the improved algorithm is superior to the principal component analysis in efficiency and accuracy.
作者 赵蔷 惠燕 张忠 刘咪 ZHAO Qiang;HUI Yan;ZHANG Zhong;LIU Mi(School of Computer Science,Xianyang Normal University,Xianyang 712000,China)
出处 《航空计算技术》 2019年第5期40-42,共3页 Aeronautical Computing Technique
基金 陕西省教育厅专项科研计划项目资助(15JK1803) 陕西省教育科学“十三五”规划2017年课题项目资助(SGH17H197) 陕西省2018年大学生创新创业训练计划项目资助(201828036)
关键词 二维主成分分析 特征提取 人脸识别 2D PCA feature extraction face recognition
  • 相关文献

参考文献6

二级参考文献29

  • 1赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析[J].中国空间科学技术,2004,24(5):28-36. 被引量:19
  • 2刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:81
  • 3韩崇昭,等.多源信息融合[M].北京:电子工业出版社,2007.
  • 4David L.Hall,James Llinas.An Introduction to Multisensor Data Fusion[C].Invited Paper,Proc.of the IEEE,Vol.85,No.l,Jan 1997:6-23.
  • 5Yang J.,Yang J.Y.,Zhang D.,Lu J.F.Feature fusion Parallel strategy vs.serial strategy.Pattern Recognition[J] ,2003,Vol.36(6):1369-1381.
  • 6Wang Dawei,Ge Wei,Wang Yan jie.Using BBPSO for Feature Select in Feature-Level Fusion Target Recognition[C].4thIEEE conference on industrial electronics and applications,Xi'an,China,May.2009:1-4.
  • 7Xuguang Zhang,at el..Integrated Intensity,Orientation Code and Spatial Information for Robust Tracking[C].ICIEA 2007:1-4.
  • 8Fabien Scalzo,George Bcbis,Mircea Nicolescu,Leandro Loss.Evolutionary Learning of Feature Fusion Hierarchies[C].IEEE ICPR2008,Dec.2008:1-4.
  • 9赵春晖,宋晓玥.基于二维主成分分析的高光谱遥感图像降维[J].黑龙江大学自然科学学报,2009,26(5):684-688. 被引量:6
  • 10王大伟,陈浩,王延杰.核典型相关分析的融合人脸识别算法[J].激光与红外,2009,39(11):1241-1245. 被引量:4

共引文献74

同被引文献63

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部