期刊文献+

贫预混火焰动力学及稳定性分析 被引量:5

Dynamics and Stability Analysis of Lean Premixed Flame
下载PDF
导出
摘要 本文在贫预混燃烧容易诱导热声不稳定产生的背景下,采用大涡模拟结合系统辨识的方法,对甲烷燃料掺氢以及不同火焰筒限制两种情况下的贫预混火焰动力学进行了相关分析。之后通过得出的火焰传递函数,采用低阶网络模型的方法对系统进行了稳定性分析。研究结果表明:加入氢气后,明显增大了火焰的频响,同时火焰相位差减小;在一定的频率范围内,火焰更容易捕捉到不同火焰筒限制对响应的影响;通过采用不同的火焰筒限制,可以修改系统的稳定性行为。 Under the background that lean premixed combustion is easy to induce thermoacoustic instability, Large Eddy Simulation combined with System Identification method is used to analyze the dynamics of lean premixed flame in the case of hydrogen mixing of methane fuel and different combustor confinement. Then, the stability of the system is analyzed by the flame transfer function obtained and the method of low-order network model. The results show that the frequency response of the flame increases obviously and the phase difference of the flame decreases with the addition of hydrogen. In a certain frequency range, the influence of different combustor confinement on the response can be easily captured by the flame. The stability behavior of the system can be modified by using different flame tube restrictions.
作者 王博涵 孙潇峰 姜磊 胡宏斌 聂超群 Wang Bohan;Sun Xiaofeng;Jiang Lei;Hu Hongbin;Nie Chaoqun(Laboratory of Advanced Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100049, China;Qingdao Haier Ririshun Logistics, Shandong Qingdao 266101, China)
出处 《燃气轮机技术》 2019年第3期34-40,共7页 Gas Turbine Technology
关键词 系统辨识 火焰传递函数 低阶网络模型 热声不稳定 system identification flame transfer function low-order network model thermoacoustic instability
  • 相关文献

参考文献4

二级参考文献50

  • 1Lieuwen T. Nonlinear Kinematic Response of Premixed Flames to Harmonic Velocity Disturbances [J]. Proceedings of the Combustion Institute, 2005(30): 1725- 1732.
  • 2Zhu M, Dowling A P, Bray K N C. Transfer Function Calculation for Aeroengine Combustion Oscillations [C]//Trans. ASME: J. Eng. Gas Turbines Power, 2005(127): 18 26.
  • 3Balachandran R, Ayoola B O, Kaminski C F, et al. Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations [J]. Combustion and Flame, 2005(143): 37-55.
  • 4Thumuluru S K, Bobba M K, Lieuwen T. Mechanisms of the Nonliear Response of a Swirl Flame to Harmonic Excitation [C]// Submitted for ASME Turbo Expo 2007. Montreal, Canada, 2007:GT2007- 27932.
  • 5Bellows B D, Bobba M K, Forte A, et al. Flame Trans- fer Function Saturation Mechanisms in a Swirl-Stabilized Combustor [J]. Proceeding of the Combustor Institute, 2007(31): 3181-3188.
  • 6Longwell J P. Flame Stability in Bluff body Recirculation Zones[ J]. Industrial and Engineering Chemistry, 1953, 45(8) : 1629-1634.
  • 7Byggstoyl S, Magnussen B F. A Model of Extinction in Turbulent Flow [ C ]. Karsruhe, Germany : Fourth symposium on turbulent shear flows, 1983.
  • 8Chaudhuri S, Kostka S, Renfro M W, et al. Blowoff Dynamics of Bluff-Body Stabilized Turbulent Premixed Flames [ J ]. Combustion and Flame, 2010,157 ( 4 ) : 790- 802.
  • 9Dawson J R, Gordon R L, Kariuki J,et al. Visualization of Blow-Off Events in Bluff-Body Stabilized Turbulent Premixed Flames[ J]. Proceedings of the Combustion Institute, 2011, 33(1) : 1559-1566.
  • 10Shanbhogue S J, Husain S, Lieuwen T. Lean Blowoff of Bluff body Stabilized Flames : Scaling and Dynamics [ J ]. Progress in Energy and Combustion Science, 2009, 35: 98-120.

共引文献16

同被引文献52

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部