期刊文献+

基于神经网络的振镜式线结构光三维测量系统的标定 被引量:5

Calibration of Galvanometric Line-structured Light Based on Neural Network
下载PDF
导出
摘要 振镜式线结构光三维测量系统是一种新型系统,具有扫描速度快、测量精度和集成度高等优点,在三维测量领域具有广泛的应用前景。为了避免建立复杂的系统数学模型,提高系统的标定精度,提出了一种基于神经网络的标定方法。该方法首先基于双重交比不变原理,利用棋盘格靶标和电动平移台获取大量精确的标定点坐标,以标定点的图像坐标及光平面转角为输入,对应的三维世界坐标为输出,建立系统的神经网络模型,通过训练完成系统标定。试验表明,本文提出的标定方法简化了系统的标定过程,标定精度高且通用性好。 The three-dimensional measurement based on galvanometric line-structured light is a new system,which has widly application prospects in the field of three-dimensional measurement due to its advantages of fast scanning speed,high measurement accuracy and high integration.In order to avoid establishing the complex mathematical model and improve the calibration accuracy of the system,a calibration method based on neural network is proposed in this paper.Based on the principle of double cross ratio invariance,a large number of precise coordinates of the calibration points are obtained by using chessboard target and electric translation-platform.By using the image coordinates of calibration points and the rotation angle of laser plane as input,and the corresponding three-dimensional world coordinates as output,the neural network model of the system is established and the system calibration is completed by training.The experiments show that the proposed calibration method simplifies the calibration process and has high calibration accuracy and good versatility.
作者 杨林林 杨树明 Yang Linlin;Yang Shuming(China Academy of Engineering Physics,Institute of Machinery Manufacturing Technology,Mianyang,Sichuan 621900,China;Xi'an Jiaotong University,State Key Laboratory for Manufacturing System Engineering,Xi'an 710049,China)
出处 《工具技术》 2019年第10期97-102,共6页 Tool Engineering
基金 国家自然科学基金(51575440) 国家重点研发计划(2017YFB1104700)
关键词 振镜 线结构光 神经网络 标定方法 galvanometric line-structured light neural network calibration
  • 相关文献

参考文献2

二级参考文献18

  • 1闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,21(7):4-10. 被引量:56
  • 2刘宏建,罗毅,刘允才.可变精度的神经网络摄像机标定法[J].光学精密工程,2004,12(4):443-448. 被引量:13
  • 3R. Y. Tsai. A versatile camera calibration technique for high- accuracy 3D machine vision metrology using off-shelf TV cameras and lenses[J]. IEEE J. Robotics and Automation, 1987, 3(4) : 322-344.
  • 4J. J. Hopfield, D. W. Tank. Neural networks and physical systems with emergent collective computational abilities[J].Proceedings of the National Academy of Sciences, 1982, 79(8) : 2554-2558.
  • 5D. E. Rumelhart, J. L. McClellan& Parallel Distributed Processing[M]. Cambridge: MIT Press, 1986.
  • 6J. Wen, G. Schweitzer. Hybrid Calibration of CCD cameras using artificial neural nets[C]. Proc. Int Joint Conf. Neural Networks (New York), 1991, 1: 337-342.
  • 7M. Lynch, C. Dagli. Backpropagation neural network for stereoscopic vision calibration[C]. SPIE, 1992, 1615 : 289- 298.
  • 8J. Jun, C. Kim. Robust camera calibration using neural network[C]. Proceedings of the IEEE Region 10 conference, 1999, 694-697.
  • 9Shin'ichi Tamura, Masahiko Tateishi. Capabilities of a four- layered feedforward neural network: four layers versus three[J]. IEEE Transactions on Neural Networks, 1997, 8(2): 251-255.
  • 10刘胜,傅荟璇,王宇超.基于LS-SVM的立体视觉摄像机标定[J].光电工程,2008,35(10):21-25. 被引量:10

共引文献45

同被引文献36

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部